Τόμος 21 (2007) – Τεύχος 2 – Συμπλήρωμα 1 – Άρθρο 3 – Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Διεθνής Έκδοση – Volume 21 (2007) – Issue 2 – Supplement 1 – Article 3 – Epitheorese Klinikes Farmakologias και Farmakokinetikes-International Edition

Title β-amyloid binding alcohol dehydrogenase as pharmacological target in Alzheimer’s disease
Authors Ioannis Kiriakidis, Stergios Katsaris and Basile Kokkas 

Department of Pharmacology, Medical School, Aristotelian University, Thessaloniki, Greece

Citation Kiriakidis, I., Katsaris, S., Kokkas, B.: β-amyloid binding alcohol dehydrogenase as pharmacological target in Alzheimer’s disease, Epitheorese Klin. Farmakol. Farmakokinet. 21(2.1): 173-178 (2007)
Publication Date Accepted for publication (Final version): June 1, 2007
Full Text Language English
Order – Buy  Ηλεκτρονική Μορφή: pdf (10 €) – Digital Type: pdf (10 €)

pharmakonpress[at]pharmakonpress[.]gr

Keywords Alzheimer’s disease, β-amyloid binding alcohol dehydrogenase (ABAD), pharmacological target.
Other Terms review article
Summary Alzheimer’s disease (AD) is the most common neurodegenerative disease and this is the reason why many models have been proposed for its confrontation. Till now, therapy is mainly symptomatic, because the molecular base of the disease involves many biological cell functions. Although the cause of AD is not yet known, it seems that a central role in the pathogenesis of the disease play the β-amyloid proteins (Aβ) that are found in the observed neuritic plaques, whose metabolism and receptors have been set as potential pharmacological targets. β-Amyloid Binding Alcohol Dehydrogenase (ABAD) belongs to the protein family of short chain dehydrogenase/reductases (SDR) and is localized in both endoplasmic reticulum and mitochondria. The biological role of ABAD is to induce cell stress mediated by Aβ. Its distinctiveness is that it binds Aβ in nanomolar range and is involved in many metabolic pathways demonstrating enzymatic activity toward a broad array of substrates (linear alcohols, 3-hydroxyacyl-CoA derivatives, steroids such as 17β-estradiol). Binding with Aβ causes generation of reactive aldehydes, expression of cell stress markers and suppression of the neuroprotective effect of estrogens. Expression of ABAD is increased in AD brain, especially in neurons near deposits of Aβ and brain regions with ischemia. Structurally, ABAD is mainly characterized by a region in its active site that binds NAD+ (essential for the 3rd stage of the β-oxidation of lipids, where ABAD’s role is crucial). ABAD seems to be indispensable for the cell viability, as in in vivo studies gene inactivation linked to lethal phenotypes and multiple developmental abnormalities.  Research till now might have discouraged the pharmacological intervention against ABAD, but the understanding of its contribution to AD pathogenesis could help for its confrontation.
References 1.  Helmuth L.: New Alzheimer’s treatments that may ease the mind. Science 297(5585): 1260-1262 (2002)

2.  Carlson C.D., Czilli D.L., Gitter B.D.: Regulation of amyloid precursor protein processing by Aβ in human glioma cells. Neurobiol. Aging 21: 747-756 (2000)

3. Hebert S.S., Bourdages V., Godin C., Ferland M., Carreau M., Levesque G.: Presenilin-1 interacts directly with the β-site amyloid protein precursor cleaving enzyme (BACE1). Neurobiol. Dis. 13: 238-245 (2003)

4. Yan S.D., Roher A., Schmidt A.M., Stern D.M.: Cellular cofactors for amyloid β-peptide-induced cell stress (Moving from cell culture to in vivo). Am. J. Pathol. 155: 1403-1411 (1999)

5. Yan S.D., Shi Y., Zhu A., et al.: Role of ERAB/L-3- hydroxyacyl-coenzyme A dehydrogenase type II activity in Aβ-induced cytotoxicity. J. Biol. Chem. 274: 2145-2156 (1999)

6. Furuta S., Kobayashi A., Miyazawa S., Hashimoto T.: Cloning and expression of cDNA for a newly identified isozyme of bovine liver 3-hydroxyacyl-CoA dehydrogenase and its import into mitochondria. Biochim. Biophys. Acta 1350: 317-324 (1997)

7. Yan S.D., Schmidt A.M., Stern D.: Alzheimer’s disease: inside, outside, upside down. Biochem. Soc. Symp. 67: 15-22 (2001)

8. Yan S.D., Roher A., Chaney M., et al.: Cellular cofactors potentiating induction of stress and cytotoxicity by amyloid beta-peptide. Biochim. Biophys. Acta 1502: 145- 157 (2000)

9. Dewachter I., Van Leuven F.: Secretases as targets for the treatment of Alzheimer’s disease: the prospects. Lancet Neurol. 1: 409-416 (2002)

10. Beyreuther K., Masters C.L.:  Alzheimer’s disease. The ins and outs of amyloid-beta. Nature 389: 677-678 (1997)

11. Cui S., Yu Z., Wu H.: Analysis of the polymorphisms of the AACT, ERAB and NACP genes in 15 patients with Alzheimer’s disease. Zhonghua Yi Xue Za Zhi 81(2): 90-92 (2001)

12. Strausberg R.L., Feingold E.A., Grouse L.H., et al. (Mammalian Gene Collection Program Team): Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl. Acad. Sci. USA 99: 16899-16903 (2002)

13. Miller A.P., Willard H.F.: Chromosomal basis of X chromosome inactivation: identification of a multigene domain in Xp11.21-p11.22 that escapes X inactivation. Proc. Natl. Acad. Sci USA 95: 8709-8714 (1998)

14. Ofman R., Ruiter J.P., Feenstra M., et al.: 2-Methyl-3- hydroxybutyryl-CoA dehydrogenase deficiency is caused by mutations in the HADH2 gene. Am. J. Hum. Genet. 72: 1300-1307 (2003)

15. He X.Y., Schulz H., Yang S.Y.: A human brain L-3- hydroxyacyl-coenzyme A dehydrogenase is identical to an amyloid-peptide-binding protein involved in Alzheimer’s disease. J. Biol. Chem. 273: 10741-10746 (1998)

16. Yan S.D., Fu J., Soto C., et al.: An intracellular protein that binds amyloid-beta peptide and mediates neurotoxicity in Alzheimer’s disease. Nature 389: 689-695 (1997)

17. Kissinger C.R., Rejto P.A., Pelletier L.A., et al.: Crystal structure of human ABAD/HSD10 with a bound inhibitor: implications for design of Alzheimer’s disease therapeutics. J. Mol. Biol. 342: 943-952 (2004)

18. Hansis C., Jahner D., Spiess A.N., Boettcher K., Ivell R.: The gene for the Alzheimer-associated β-amyloid-binding protein (ERAB) is differentially expressed in the testicular Leydig cells of the azoospermic by w/wv mouse. Eur. J. Biochem. 258: 53-60 (1998)

19. Yan S.D., Zhu Y., Stern E.D., et al.: Amyloid-peptide- binding alcohol dehydrogenase is a component of the cellular response to nutritional stress. J. Biol. Chem. 275: 27100-27109 (2000)

20. He X.Y., Merz G., Yang Y.Z., et al.: Characterization and localization of human type10 17-hydroxysteroid dehydrogenase. Eur. J. Biochem. 268: 4899-4907 (2001)

21. He X.Y., Yang Y.Z., Schulz H., Yang S.Y.: Intrinsic alcohol dehydrogenase and hydroxysteroid dehydrogenase activities of human mitochondrial short-chain L-3-hydroxyacyl-CoA dehydrogenase. Biochem. J. 345: 139- 43 (2000)

22. Yan S.D., et al.: Cellular cofactors for amyloid l3-peptide-induced cell stress (Moving from cell culture to in vivo). Am. J. Pathol. 155: 1403-1411 (1999)

23. Powell A.J., Read J.A., Banfield M.J., et al.: Recognition of structurally diverse substrates by type II 3-hydroxyacyl-CoA dehydrogenase (HADH II)/amyloid-beta binding alcohol dehydrogenase (ABAD). J. Mol. Biol. 303: 311-327 (2000)

24. Frackowiak J., Mazur-Kolecka  B., Kaczmarski W., Dickson D.: Deposition of Alzheimer’s vascular amyloid-beta is associated with decreased expression of brain L-3-hydroxyacyl-coenzyme A dehydrogenase (ERAB). Brain Res. 907(1-2): 44-53 (2001)

25. Opperman U.C., Salim S., Tjernberg L.O., Terenius L., Jornall H.: Binding of amyloid beta-peptide to mitochondrial hydroxyacyl-CoA dehydrogenase (ERAB): regulation of an SDR enzyme activity with implications for apoptosis in Alzheimer’s disease. FEBS Lett. 451: 238- 242 (1999)

26. Sambamurti K., Lahiri D.K.: ERAB contains a putative noncleavable signal peptide. Biochem. Biophys. Res. Commun. 249: 546-549 (1998)

27. Salim S., Filling C., Martensson E., Oppermann U.C.: Lack of quinone reductase activity suggests that amyloid- beta peptide/ERAB induced lipid peroxidation is not directly related to production of reactive oxygen species by redoxcycling. Toxicology 144(1-3): 163-168 (2000)

28. Mark R.J., Lovell M.A., Markesbery W.R., Uchida K., Mattson M.P.: A role for 4-HNE in disruption of ion homeostasis and neuronal death induced by Al3. J. Neurochem. 68: 255-264 (1997)

29. Tang M.X., Jacobs D., Stern Y., et al.: Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet 348: 429-432 (1994)

30. Behl C., Widmann M., Trapp T., Holsboer F.: 17l3- Estradiol protects neurons from oxidative stress-induced cell death in vitro. Biochem. Biophys. Res. Commun. 216: 473-482 (1995)

31. Keller J., Germeyer A., Begley J.G., Mattson M.P.: 17β-Estradiol attenuates oxidative impairment of synaptic Na/K-ATPase activity, glucose transport and glutamate transport induced by Aβ and iron. J. Neurosci. 15: 522- 530 (1997)

32. Petrozzi L., Ricci G., Giglioli N.J., Siciliano G., Mancuso M.: Mitochondria and Neurodegeneration. Biosci. Rep. [Epub ahead of print] (2007)

33. Hong W.K., Han E.H., Kim D.G., et al.: Amyloid-beta-peptide reduces the expression level of mitochondrial cytochrome oxidase subunits. Neurochem. Res. [Epub ahead of print] (2007)

34. Takuma K., Yao J., Huang J., et al.: ABAD enhances beta-induced cell stress via mitochondrial dysfunction. FASEB J. 19: 597-598 (2005)

35. Chen X., Stern D., Yan S.D.: Mitochondrial dysfunction and Alzheimer’s disease. Curr. Alzheimer Res. 3: 515-520 (2006)

36. Yan S.D., Stern D.M.: Mitochondrial dysfunction and Alzheimer’s disease: role of amyloid-beta peptide alcohol dehydrogenase (ABAD). Int. J. Exp. Pathol. 86: 161-171 (2005)

37. Lustbader J.W., Cirilli M., Lin C., et al.: ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 304(5669): 448-452 (2004)

38. Milton N.G., Mayor N.P., Rawlinson J.: Identification of amyloid-beta binding sites using an antisense peptide approach. Neuroreport. 12: 2561-2566 (2001)

39. Torroja L., Ortuno-Sahagun D., Ferrus A., Hammerle B., Barbas J.A.: Scully, an essential gene of Drosophila, is homologous to mammalian mitochondrial type II L-3- hyroxyacyl-CoA dehydrogenase/amyloid-β peptide-binding protein. J. Cell Biol. 141: 1009-1017 (1998)

40. He X.Y., Merz G., Yang Y.Z., et al.: Function of human brain short chain L-3-hydroxyacyl coenzyme A dehydrogenase in androgen metabolism. Biochim. Biophys. Acta 1484: 267-277 (2000)

Relative Papers

Online ISSN 1011-6575

Άρθρα Δημοσιευμένα σε αυτό το Περιοδικό Καταχωρούνται στα:

Articles published in this Journal are Indexed or Abstracted in: • Chemical Abstracts • Elsevier’s Bibliographic Databases: Scopus, EMBASE, EMBiology, Elsevier BIOBASE SCImago Journal and Country Rank Factor

Τι είναι η Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Διεθνής Έκδοση-Οδηγίες προς τους Συγγραφείς – 
What is Epitheorese Klinikes Farmakologias 
και Farmakokinetikes-International Edition-Instrunctions to Authors

Άρθρα Δημοσιευμένα στην Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Διεθνής Έκδοση – 
Articles Published in Epitheorese Klinikes Farmakologias 
και Farmakokinetikes-International Edition

Συντακτικη Επιτροπή-Editorial Board

ΕΤΗΣΙΑ ΣΥΝΔΡΟΜΗ 2007 – ANNUAL SUBSCRIPTION 2007
Γλώσσα Πλήρους Κειμένου – Full Text Language Αγγλικά – English
Παραγγελία – Αγορά – Order – Buy Ηλεκτρονική Μορφή: pdf (70 €) – Digital Type: pdf (70 €)

pharmakonpress[at]pharmakonpress[.]gr

Έντυπη Μορφή (70 € + έξοδα αποστολής) – Printed Type (70 € + shipping)

pharmakonpress[at]pharmakonpress[.]gr

 

 

 

Bookmark the permalink.

Comments are closed.