Title | The functional role of glycosaminoglycans in the pathophysiology of the thyroid gland and their putative role as prognostic, diagnostic and therapeutic agents in thyroid pathologies | |
Authors | Eleni Memi, George Karakiulakis, Fani Goma and Eleni Papakonstantinou
Dept of Pharmacology, School of Medicine, Aristotle University, Thessaloniki GR 54124, Greece |
|
Citation | Memi, E., Karakiulakis, G., Goma, F., Papakonstantinou, E.: The functional role of glycosaminoglycans in the pathophysiology of the thyroid gland and their putative role as prognostic, diagnostic and therapeutic agents in thyroid pathologies, Epitheorese Klin. Farmakol. Farmakokinet. 26(2): 61-86 (2012) | |
Publication Date | Accepted for publication (Final Version): April 10, 2013 | |
Full Text Language | English | |
Order – Buy | Ηλεκτρονική Μορφή: pdf (10 €) – Digital Type: pdf (10 €)
pharmakonpress[at]pharmakonpress[.]gr |
|
Keywords | Thyroid pathologies, glycosaminoglycans, hyaluronic acid, dermatan sulfate, chondroitin sulfate, keratan sulfate, heparan sulfate, heparin, proteoglycans, perlecan, syndecan, versican, decorin, glypican, CD44 | |
Other Terms | review article | |
Summary | Glycosaminoglycans are linear acidic polysaccharides, comprising hyaluronic acid, dermatan sulfate, chondroitin sulfate, keratan sulfate, heparin sulfate and heparin, which differ in their specific composition. These molecules are encountered in the extracellular matrix and play a major role in the development of tissues physiological properties. With the exception of hyaluronic acid, glycosaminoglycans are covalently linked to core proteins to form proteoglycans. Glycosaminoglycans and proteoglycans are involved in important biological events, such as cellular proliferation, adhesion, migration and differentiation. These molecules have also been shown to participate in the development of both neoplastic and hyperplastic, space occupying lesions. In the field of thyroidology, it has been shown that glycosaminoglycans, proteoglycans and related molecules play a major role in the development of both physiological properties and pathological conditions of the thyroid gland. Numerous studies, including our own, support the involvement of glycosaminoglycans and proteoglycans, such as perlecan, syndecan, versican, decorin, glypican and CD44, in the pathogenesis of hyperplastic and autoimmune lesions, benign neoplasms and malignancies. These molecules show distinct features in thyroid diseases, which may be helpful in understanding the complex behaviour of these diseases. Their value as biomarkers and therapeutic targets or vehicle components remains to be determined, but preliminary data are encouraging. Our own results were based on the investigation of tissue specimens dissected from thyroid glands of patients who underwent thyroidectomy for nodular goitre (n=42), thyroiditis Hashimoto (n=11), follicular adenoma (n=7) and papillary carcinoma (n=9). Total glycosaminoglycans were isolated from homogenized tissue specimens and they were characterized using glycosaminoglycans-degrading enzymes. In addition, a part of each specimen was elaborated for the extraction of total RNA and the expression of proteoglycans and enzymes metabolizing hyaluronic acid were tested by RT-PCR analysis. We found a statistically significant increase of dermatan sulfate and heparan sulfate in nodular goitre, which was not observed in the other thyroid pathologies examined in our study. Our results also showed a statistically significant increase of hyaluronic acid in papillary carcinoma, follicular adenoma and thyroiditis Hashimoto, which was associated with: a) increased expression of hyaluronic acid synthase (HAS)-2 and HAS-3 in all three diseases; b) decreased expression of both hyaluronidase (HYAL)-1 and HYAL-3 in papillary carcinoma and follicular adenoma and c) decreased expression of HYAL-3 in thyroiditis Hashimoto. Moreover, RT-PCR analysis demonstrated a statistically significant decrease of the expression of syndecan-1 in papillary carcinoma and follicular adenoma and a statistically significant increase of the expression of versican V1 in all thyroid diseases examined in our study. These finding may be proved to be useful for the differential diagnosis between benign and malignant thyroid nodules. This review summarizes currently available data regarding glycosaminoglycans and proteoglycans in relation to thyroid pathophysiology, which may be exploited for the development of novel prognostic, diagnostic and therapeutic strategies, easing the resolution of common clinical dilemmas in thyroid pathology. | |
References | 1. Paulson D.L.: Experimental exophthalmos in the guinea pig. Proc. Soc. Exper. Biol. Med. 36: 604-609 (1937)
2. Smelser G.K.: The histology of orbital and other fat tissue deposits in animals with experimentally produced exophthalmos. Am. J. Pathol. 15: 341-351 (1939) 3. Trotter W.R., Eden K.C.: Localized pretibial myxedema in association with toxic goitre. Q. J. Med. 11: 229-240 (1942) 4. Watson E.M., Pearce R.H.: The mucopolysaccharide content of the skin in localized (pretibial) myxedema. Am. J. Clin. Pathol. 19: 442-447 (1949) 5. Wegelius O., Asboe-Hansen G., Lamberg B.-A.: Retrobulbar connective tissue changes in malignant exophthalmos. Acta Endocrinologica 25: 452-456 (1957) 6. Ludwig A.W., Boas N.F., Soffer L.I.: Role of mucopolysaccharides in pathogenesis of experimental exophthalmos. Proc. Soc. Exper. Biol. Med. 73: 137-146 (1950) 7. Asboe-Hansen G., Iversen K.: Influence of thyrotrophic hormone on connective tissue. Pathogenetic significance of mucopolysaccharides in experimental exophthalmos. Acta Endocrinol. 8: 90-96 (1951) 8. Bartalena L., Pinchera A., Marcocci C.: Management of Graves’ ophthalmopathy: reality and perspectives. Endocr. Rev. 21: 168-199 (2000) 9. Burch H.B., Wartofsky L.: Graves’ ophthalmopathy: current concepts regarding pathogenesis and management. Endocr. Rev. 14: 747-793 (1993) 10. Bahn R.S., Heufelder A.E.: Pathogenesis of Graves’ ophthalmopathy. N. Engl. J. Med. 329: 1468-1475 (1993) 11. Hansen C., Rouhi R., Förster G., Kahaly G.J.: Increased sulfatation of orbital glycosaminoglycans in Graves’ ophthalmopathy. J. Clin. Endocrinol. Metab. 84: 1409-1413 (1999) 12. Bahn R.S.: Clinical review 157: Pathophysiology of Graves’ ophthalmopathy: the cycle of disease. J. Clin. Endocrinol. Metab. 88: 1939-1946 (2003) 13. Heufelder A.E.: Pathogenesis of Graves’ ophthalmopathy: recent controversies and progress. Eur. J. Endocrinol. 132: 532-541 (1995) 14. Heufelder A.E., Scriba P.C.: Characterization of adhesion receptors on cultured microvascular endothelial cells derived from the retroorbital connective tissue of patients with Grave’s ophthalmopathy. Eur. J. Endocrinol. 134: 51-60 (1996) 15. Wiersinga W.M., Prummel M.F.: Pathogenesis of Graves’ ophthalmopathy: Current understanding. J. Clin. Endocrinol. Metab. 86: 501-503 (2001) 16. Mohácsi A., Trieb K., Anderl H., Grubeck-Loebenstein B.: Retrobulbar fibroblasts from patients with Graves’ ophthalmopathy induce downregulation of APO-1 in T lymphocytes and protect T cells from apoptosis during coculture. Int. Arch. Allergy Immunol. 109: 327-333 (1996) 17. Sorisky A., Pardasani D., Gagnon A., Smith T.J.: Evidence of adipocyte differentiation in human orbital fibroblasts in primary culture. J. Clin. Endocrinol. Metab. 81: 3428-3431 (1996) 18. Khoo D.H., Ho S.C., Seah L.L., Fong K.S., Tai E.S., Chee S.P., Eng P.H., Aw S.E., Fok A.C.: The combination of absent thyroid peroxidase antibodies and high thyroidstimulating immunoglobulin levels in Graves’ disease identifies a group at markedly increased risk of ophthalmopathy. Thyroid 9: 1175-1180 (1999) 19. Gerding M.N., van der Meer J.W., Broenink M., Bakker O., Wiersinga W.M., Prummel M.F.: Association of thyrotrophin receptor antibodies with the clinical features of Graves’ ophthalmopathy. Clin. Endocrinol. (Oxf.) 52: 267-271 (2000) 20. Machens A., Holzhausen H.J., Dralle H.: The prognostic value of primary tumor size in papillary and follicular thyroid carcinoma. Cancer 103: 2269-2273 (2005) 21. Winand R.J.: Increased urinary excretion of acidic mucopolysaccharides in exophthalmos. J. Clin. Invest. 47: 2563-2568 (1968) 22. Drexhage H.A.: Are there more than antibodies to the thyroid-stimulating hormone receptor that meet the eye in Graves’ disease? Endocrinology 147: 9-12 (2006) 23. Prabhakar B.S., Bahn R.S., Smith T.J.: Current perspective on the pathogenesis of Graves’ disease and ophthalmopathy. Endocr. Rev. 24: 802-835 (2003) 24. Marinò M., Lisi S., Pinchera A., Marcocci C., Menconi F., Morabito E., Macchia M., Sellari-Franceschini S., McCluskey R.T., Chiovato L.: Glycosaminoglycans provide a binding site for thyroglobulin in orbital tissues of patients with thyroid-associated ophthalmopathy. Thyroid 13: 851-859 (2003) 25. Lisi S., Botta R., Agretti P., Sellari-Franceschini S., Marcocci C., Pinchera A., Marino M.: Poorly specific binding of thyroglobulin to orbital fibroblasts from patients with Graves’ ophthalmopathy. J. Endocrinol. Invest. 28: 420-424 (2005) 26. Burgi-Saville M.E., Gerber H., Peter H.J., Paulsson M., Aeschlimann D., Glaser C., Kaempf J., Ruchti C., Sidiropoulos I., Burgi U.: Expression patterns of extracellular matrix components in native and cultured normal human thyroid tissue and in human toxic adenoma tissue. Thyroid 7: 347-356 (1997) 27. Giraud A., Bouchilloux S.: Effect of thyrotropin on glycosaminoglycans synthesized by primocultured thyroid cells. Biochem. Biophys. Res. Commun. 111: 353-359 (1983) 28. Shishiba Y., Yanagishita M., Hascall V.C., Takeuchi Y., Yokoi N.: Characterization of proteoglycans synthesized by rat thyroid cells in culture and their response to thyroid stimulating hormone. J. Biol. Chem. 263: 1745-1754 (1988) 29. Smith T.J., Murata Y., Horwitz A.L., Philipson L., Refetoff S.: Regulation of glycosaminoglycan synthesis by thyroid hormone in vitro. J. Clin. Invest. 70: 1066-1073 (1982) 30. Murata Y., Refetoff S., Horwitz A.L., Smith T.J.: Hormonal regulation of glycosaminoglycan accumulation in fibroblasts from patients with resistance to thyroid hormone. J. Clin. Endocrinol. Metab. 57: 1233-1239 (1983) 31. Shishiba Y., Yanagishita M., Hascall V.C.: Effect of thyroid hormone deficiency on proteoglycan synthesis by human skin fibroblast cultures. Connect. Tissue Res. 17: 119-135 (1988) 32. Shishiba Y., Takeuchi Y., Yokoi N., Ozawa Y., Shimizu T.: Thyroid hormone excess stimulates the synthesis of proteoglycan in human skin fibroblasts in culture. Acta Endocrinol. (Copenh.) 123: 541-549 (1990) 33. Mendes-de-Aguiar C.B., Costa-Silva B., Alvarez-Silva M., Tasca C.I., Trentin A.G.: Thyroid Hormone Mediates Syndecan Expression in Rat Neonatal Cerebellum. Cell. Mol. Neurobiol. 28: 795-801 (2008) 34. Normand G., Clos J., Vitiello F., Gombos G.: Developing rat cerebellum: I. Effects of abnormal thyroid states and undernutrition on sulfated glycosaminoglycans. Int. J. Dev. Neurosci. 7: 323-328 (1989) 35. Normand G., Vitiello F., Clos J., Gombos G.: Developing rat cerebellum: II. Effects of abnormal thyroid states and undernutrition on hyaluronic acid. Int. J. Dev. Neurosci. 7: 329-334 (1989) 36. Calloni G.W., Alvarez-Silva M., Vituri C., Trentin A.G.: Thyroid hormone deficiency alters extracellular matrix protein expression in rat brain. Brain Res. Dev. Brain Res. 126: 121-124 (2001) 37. Van Dessel G., Lagrou A., Hilderson H.J., Dierick W.: The mucopolysaccharides of bovine thyroid [proceedings]. Arch. Int. Physiol. Biochim. 86: 959-960 (1978) 38. Giraud A., Bouchilloux S.: Effect of thyrotropin on glycosaminoglycans synthesized by primocultured thyroid cells. Biochem. Biophys. Res. Commun. 111: 353-359 (1983) 39. Imai Y., Odajima R., Inoue Y., Shishiba Y.: Effect of growth factors on hyaluronan and proteoglycan synthesis by retroocular tissue fibroblasts of Graves’ ophthalmopathy in culture. Acta Endocrinol. (Copenh.) 126: 541-552 (1992) 40. Sisson J.C.: Hyaluronic acid in localized myxedema. J. Clin. Endocrinol. Metab. 28: 433-436 (1968) 41. Lund P., Hørslev-Petersen K., Helin P., Parving H.H.: The effect of l-thyroxine treatment on skin accumulation of acid glycosaminoglycans in primary myxoedema. Acta Endocrinol. (Copenh.) 113: 56-58 (1986) 42. Parving H.H., Helin G., Garbarsch C., Johansen A.A., Jensen B.A., Helin P., Lund P., Lyngsøe J.: Acid glycosaminoglycans in myxoedema. Clin. Endocrinol. (Oxf.) 16: 207-210 (1982) 43. Barud W., Hanzlik J.: Endocrine ophthalmopathy: etiopathology. Wiad. Lek. 48(1-12): 117-121 (1995) 44. Velkeniers B., Salu P.: Pathogenesis and treatment of the ophthalmopathy associated with Graves’ disease. Bull. Soc. Belge Ophtalmol. 245: 9-14 (1992) 45. Fatourechi V.: Pretibial myxedema: pathophysiology and treatment options. Am. J. Clin. Dermatol. 6: 295-309 (2005) 46. Warner T.F., Wrone D.A., Williams E.C., Cripps D.J., Mudhenke C., Friedl A.: Heparan sulphate proteoglycan in scleromyxedema promotes FGF-2 activity. Pathol. Res. Pract. 198: 701-707 (2002) 47. Shishiba Y., Tanaka T., Ozawa Y., Shimizu T., Kadowaki N.: Chemical characterization of high buoyant density proteoglycan accumulated in the affected skin of pretibial myxedema of Graves’ disease. Endocrinol. Jpn 33: 395-403 (1986) 48. Kriss J.P.: Pathogenesis and treatment of pretibial myxedema. Endocrinol. Metab. Clin. North Am. 16: 409-415 (1987) 49. Schiller S., Slover G.A., Dorfman A.: Effect of the thyroid gland on metabolism of acid mucopolysaccharides in skin. Biochim. Biophys. Acta 58: 27-33 (1962) 50. Cheung H.S., Nicoloff J.T., Kamiel M.B., Spolter L., Nimni M.E.: Stimulation of fibroblast biosynthetic activity by serum of patients with pretibial myxedema. J. Invest. Dermatol. 71: 12-17 (1978) 51. Rotella C.M., Zonefrati R., Toccafondi R., Valente W.A., Kohn L.D.: Ability of monoclonal antibodies to the thyrotropin receptor to increase collagen synthesis in human fibroblasts: an assay which appears to measure exophthalmogenic immunoglobulins in Graves’ sera. J. Clin. Endocrinol. Metab. 62: 357-367 (1986) 52. Smith T.J., Wang H.S., Evans C.H.: Leukoregulin is a potent inducer of hyaluronan synthesis in cultured human orbital fibroblasts. Am. J. Physiol. 268(2 Pt 1): C382-C388 (1995) 53. Hansen C., Otto E., Kuhlemann K., Forster G., Kahaly G.J.: Glycosaminoglycans in autoimmunity. Clin. Exp. Rheumatol. 14(Suppl 15): S59-67 (1996) 54. Smith T.J., Hoa N.: Immunoglobulins from patients with Graves’ disease induce hyaluronan synthesis in their orbital fibroblasts through the self-antigen, insulin-like growth factor-I receptor. J. Clin. Endocrinol. Metab. 89: 5076-5080 (2004) 55. Kaback L.A., Smith T.J.: Expression of hyaluronan synthase messenger ribonucleic acids and their induction by interleukin-1beta in human orbital fibroblasts: potential insight into the molecular pathogenesis of thyroidassociated ophthalmopathy. J. Clin. Endocrinol. Metab. 84: 4079-4084 (1999) 56. Cawood T.J., Moriarty P., O’Farrelly C., O’Shea D.: Smoking and thyroid-associated ophthalmopathy: A novel explanation of the biological link. J. Clin. Endocrinol. Metab. 92: 59-64 (2007) 57. Cawood T.J., Moriarty P., O’Farrelly C., O’Shea D.: The effects of tumour necrosis factor-alpha and interleukin1 on an in vitro model of thyroid-associated ophthalmopathy; contrasting effects on adipogenesis. Eur. J. Endocrinol. 155: 395-403 (2006) 58. Kahaly G., Hansen C.E., Stover C., Beyer J., Otto E.: Glycosaminoglycan antibodies in endocrine ophthalmopathy. Horm. Metab. Res. 25: 637-639 (1993) 59. Gabrilove J.L., Ludwig A.W.: The histogenesis of myxedema. J. Clin. Endocrinol. Metab. 17: 925-932 (1957) 60. Lewinson D., Harel Z., Shenzer P., Silbermann M., Hochberg Z.: Effect of thyroid hormone and growth hormone on recovery from hypothyroidism of epiphyseal growth plate cartilage and its adjacent bone. Endocrinology 124: 937-945 (1989) 61. Wegrowski J., Bellon G., Haye B., Borel J.P.: Effects of thyroid-stimulating hormone and phorbol ester on glycosaminoglycan synthesis in porcine thyroid epithelial cells in primary culture. Cell. Biol. Int. Rep. 13: 881-890 (6129. 8K9o) foed J.A., Barceló A.C.: The acidic glycosaminoglycans in gasric mucosa of athyroid rats: The effects of L-triiododthyronine. Experientia 34: 808-809 (1978) 63. Kofoed J.A., Bozzini C.E., Tocci A.A.: The distribution of acidic glycosaminoglycans in tracheal cartilage of rats after thyroid destruction by radioactive iodine: the effects of isomers of tri-iodothyronine. J. Endocrinol. 45: 609-610 (1969) 64. Von Knorring J.: Analysis of myocardial mucopolysaccharides in hyper-and hypothyroid rats and guinea-pigs. Ann. Med. Exp. Biol. Fenn. 48: 8-15 (1970) 65. Gabrilove J.l., Alvarez A.S., Churg J.: Generalized and localized (pretibial) myxedema: effect of thyroid analogues and adrenal glucocorticoids. J. Clin. Endocrinol. Metab. 20: 825-832 (1960) 66. Makihira S., Yan W., Murakami H., Furukawa M., Kawai T., Nikawa H., Yoshida E., Hamada T., Okada Y., Kato Y.: Thyroid hormone enhances aggrecanase-2/ADAM-TS5 expression and proteoglycan degradation in growth plate cartilage. Endocrinology 144: 2480-2488 (2003) 67. Arbogast B., Hopwood J.J., Dorfman A.: Absence of hyaluronidase in cultured human skin fibroblasts. Biochem. Biophys. Res. Commun. 67: 376-382 (1975) 68. Stair-Nawy S., Csóka A.B., Stern R.: Hyaluronidase expression in human skin fibroblasts. Biochem. Biophys. Res. Commun. 266: 268-273 (1999) 69. Nazarov A.N., Egart F.M., Bobrovskaia T.A., Daikhin E.I., Sugoniaeva V.T.: Dynamics of the renal excretion of glycosaminoglycans as affected by thyroid therapy of hypothyroidism. Probl. Endokrinol. (Mosk.) 34(2): 10-13 (1988) 70. Tokoro T., Eto Y.: Increased urinary excretion of acid mucopolysaccharides and glycopeptides in hypothyroidism following thyroid hormone therapy. Eur. J. Pediatr. 144: 84-86 (1985) 71. Faber J., Hørslev-Petersen K., Perrild H., Lorenzen I.: Different effects of thyroid disease on serum levels of procollagen III N-peptide and hyaluronic acid. J. Clin. Endocrinol. Metab. 71: 1016-1021 (1990) 72. Mohr-Kahaly S., Kahaly G., Meyer J.: Cardiovascular effects of thyroid hormones. Z. Kardiol. 85(Suppl 6): 219-231 (1996) 73. Drobnik J., Ciosek J., Slotwinska D., Stempniak B., Zukowska D., Marczynski A.., Tosik D., Bartel H., Dabrowski R.., Szczepanowska A.: Experimental hypothyroidism increases content of collagen and glycosaminoglycans in the heart. J. Physiol. Pharmacol. 60(3): 57-62 (2009) 74. Wiig H., Reed R.K., Tenstad O.: Interstitial fluid pressure, composition of interstitium, and interstitial exclusion of albumin in hypothyroid rats. Am. J. Physiol. Heart Circ. Physiol. 278: H1627-H1639 (2000) 75. Zhang L., Bowen T., Grennan-Jones F., Paddon C., Giles P., Webber J., Steadman R., Ludgate M.: Thyrotropin receptor activation increases hyaluronan production in preadipocyte fibroblasts: contributory role in hyaluronan accumulation in thyroid dysfunction. J. Biol. Chem. 284: 26447-26455 (2009) 76. Gianoukakis A.G., Jennings T.A., King C.S., Sheehan C.E., Hoa N., Heldin P., Smith T.J.: Hyaluronan accumulation in thyroid tissue: evidence for contributions from epithelial cells and fibroblasts. Endocrinology 148: 54-62 (2007) 77. Paschke R., Metcalfe A., Alcalde L., Vassart G., Weetman A., Ludgate M.: Presence of nonfunctional thyrotropin receptor variant transcripts in retroocular and other tissues. J. Clin. Endocrinol. Metab. 79: 1234-1238 (1994) 78. Tsui S., Naik V., Hoa N., Hwang C.J., Afifiyan N.F., Sinha Hikim A., Gianoukakis A.G., Douglas R.S., Smith T.J.: Evidence for an association between thyroidstimulating hormone and insulin-like growth factor 1 receptors: a tale of two antigens implicated in Graves’ disease. J. Immunol. 181: 4397-4405 (2008) 79. Valyasevi R.W., Erickson D.Z., Harteneck D.A., Dutton C.M., Heufelder A.E., Jyonouchi S.C., Bahn R.S.: Differentiation of human orbital preadipocyte fibroblasts induces expression of functional thyrotropin receptor. J. Clin. Endocrinol. Metab. 84: 2557-2562 (1999) 80. Agretti P., De Marco G., De Servi M., Marcocci C., Vitti P., Pinchera A., Tonacchera M.: Evidence for protein and mRNA TSHr expression in fibroblasts from patients with thyroid-associated ophthalmopathy (TAO) after adipocytic differentiation. Eur. J. Endocrinol. 152: 777-784 (2005) 81. Crisp M., Starkey K.J., Lane C., Ham J., Ludgate M.: Adipogenesis in thyroid eye disease. Invest. Ophthalmol. Vis. Sci 41: 3249-3255 (2000) 82. Feliciello A., Porcellini A., Ciullo I., Bonavolontà G., Avvedimento E.V., Fenzi G.: Expression of thyrotropinreceptor mRNA in healthy and Graves’ disease retro-orbital tissue. Lancet 342(8867): 337-338 (1993) 83. Davies T.F., Teng C.S., McLachlan S.M., Smith B.R., Hall R.: Thyrotropin receptors in adipose tissue, retroorbital tissue and lymphocytes. Mol. Cell. Endocrinol. 9: 303-310 (1978) 84. Wakelkamp I.M., Bakker O., Baldeschi L., Wiersinga W.M., Prummel M.F.: TSH-R expression and cytokine profile in orbital tissue of active vs. inactive Graves’ ophthalmopathy patients. Clin. Endocrinol. (Oxf.) 58: 280-287 (2003) 85. Starkey K.J., Janezic A., Jones G., Jordan N., Baker G., Ludgate M.: Adipose thyrotrophin receptor expression is elevated in Graves’ and thyroid eye diseases ex vivo and indicates adipogenesis in progress in vivo. J. Mol. Endocrinol. 30: 369-380 (2003) 86. Wu S.L., Yang C.S., Wang H.J., Liao C.L., Chang T.J., Chang T.C.: Demonstration of thyrotropin receptor mRNA in orbital fat and eye muscle tissues from patients with Graves’ ophthalmopathy by in situ hybridization. J. Endocrinol. Invest. 22: 289-295 (1999) 87. Tramontano D., Cushing G.W., Moses A.C., Ingbar S.H.: Insulin-like growth factor-I stimulates the growth of rat thyroid cells in culture and synergizes the stimulation of DNA synthesis induced by TSH and Graves’-IgG. Endocrinology 119: 940-942 (1986) 88. Tramontano D., Moses A.C., Picone R., Ingbar S.H.: Characterization and regulations of the receptor for insulinlike growth factor-I in the FRTL-5 rat thyroid follicular cell line. Endocrinology 120: 785-790 (1987) 89. Tramontano D., Moses A.C., Veneziani B.M., Ingbar S.H.: Adenosine 3’5’-monophosphate mediates both the mitogenic effect of thyrotropin and its ability to amplify the response to insulin-like growth factor-1 in FRTL-5 cells. Endocrinology 122: 127-132 (1988) 90. Tramontano D., Moses A.C., Ingbar S.H.: The role of adenosine 3’,5’-monophosphate in the regulation of receptors for thyrotropin and insulin-like growth factor-1 in the FRTL-5 rat thyroid follicular cell. Endocrinology 122: 133-136 (1988) 91. Clement S., Refetoff S., Robaye B., Dumont J.E., Schurmans S.: Low TSH requirement and goiter in transgenic mice overexpressing IGF-1 and IGF-1 receptor in the thyroid gland. Endocrinology 142: 5131-5139 (2001) 92. Winsz-Szczotka K., Komosinska-Vassev K., Olczyk K.: The metabolism of glycosaminoglycans in the course of Graves’ disease. Postepy Hig. Med. Dosw (Online) 60: 184-191 (2006) 93. Komosinska-Vassev K., Winsz-Szczotka K., Olczyk K., Kozma E.M.: Alterations in serum glycosaminoglycan profiles in Graves’ patients. Clin. Chem. Lab. Med. 44: 582-588 (2006) 94. Winsz-Szczotka K.B., Olczyk K.Z., Kozma E.M., Komosinska-Vassev K.B., Wisowski G.R., Marcisz C.: Serum glycosaminoglycans in Graves’ disease patients. Wiad. Lek. 59: 66-71 (2006) 95. Komosinska-Vassev K., Olczyk K., Kozma E.M., Winsz-Szczotka K., Olczyk P., Wisowski G.: Graves’ diseaseassociated changes in the serum lysosomal glycosidases activity and the glycosaminoglycan content. Clin. Chim. Acta 331: 97-102 (2003) 96. Martins J.R., Furlanetto R.P., Oliveira L.M., Mendes A., Passerotti C.C., Chiamolera M.I., Rocha A.J., Manso P.G., Nader H.B., Dietrich C.P., Maciel R.M.: Comparison of practical methods for urinary glycosaminoglycans and serum hyaluronan with clinical activity scores in patients with Graves’ ophthalmopathy. Clin. Endocrinol. (Oxf.) 60: 726-733 (2004) 97. Kahaly G., Forster G., Hansen C.: Glycosaminiglycans in thyroid eye disease. Thyroid 8: 429-432 (1998) 98. Kahaly G., Hansen C., Bever J., Winand R.: Plasma glycosaminoglycans in endocrine ophthalmopathy. J. Endocrinol. Invest. 17: 45-50 (1994) 99. Kahaly G., Stover C., Otto E., Bever G., Schuler M.: Glycosaminoglycans in thyroid-associated ophthalmopathy. Autoimmunity 13: 81-88 (1992) 100. Kahaly G., Schuler M., Sewell A.C., Bernhard G., Bever J., Krause U.: Urinary glycosaminoglycans in Graves’ ophthalmopathy. Clin. Endocrinol. (Oxf.) 33: 35-44 (1990) 101. Pappa A., Jackson P., Stone J., Munro P., Fells P., Pennock C., Lightman S.: An ultrastructural and systemic analysis of glycosaminoglycans in thyroid-associated ophthalmopathy. Eye 12: 237-244 (1998) 102. Priestley G.C., Aldridge R.D., Hurel S.: Urinary glycosaminoglycans excretion in Graves’ disease. Acta Derm. Venereol. 76: 368-370 (1996) 103. Mummert M.E.: Immunologic roles of yaluronan. Immunol. Res. 31: 189-206 (2005) 104. Ermak G., Gerasimov G., Troshina K., Jennings T., Robinson L., Ross J.S., Figge J.: Deregulated alternative splicing of CD44 messenger RNA transcripts in neoplastic and nonneoplastic lesions of the human thyroid. Cancer Res. 55: 4594-4598 (1995) 105. Nikiel B., Chekan M., Jaworska M., Jarzab M., Maksymiuk B., Lange D.: [Expression of the selected adhesive molecules (cadherin E, CD44, LGAL3 and CA50) in papillary thyroid carcinoma]. Endokrynol. Pol. 57: 326-335 (2006) 106. Fukazawa H., Yoshida K., Ichinohasama R., Sawai T., Hiromatsu Y., Mori K., Kikuchi K., Aizawa Y., Abe K., Wall J.R.: Expression of the Hermes-1 (CD44) and ICAM-1 (CD54) molecule on the surface of thyroid cells from patients with Graves’ disease. Thyroid 3: 285-289 (1993) 107. Jungheim K., Caspar G., Usadel K.H., Schumm-Draeger P.M.: Expression of intracellular adhesion molecule-1 and vascular cell adhesion molecule-1 and homing factor CD44 after engraftment of Graves’ lymphocytes in xenotransplanted human thyroid tissue in athymic nude mice. Thyroid 11: 831-837 (2001) 108. Ermak G., Jennings T., Boguniewicz A., Figge J.: Novel CD44 messenger RNA isoforms in human thyroid and breast tissues feature unusual sequence rearrangements. Clin. Cancer Res. 2: 1251-1254 (1996) 109. Aogi K., Kitahara K., Urquidi V., Tarin D., Goodison S.: Comparison of telomerase and CD44 expression as diagnostic tumor markers in lesions of the thyroid. Clin. Cancer Res. 5: 2790-2797 (1999) 110. Shishiba Y., Yanagishita M.: Presence of heparin sulfate proteoglycan in thyroid tissue. Endocrinol. Jpn 30: 637-641 (1983) 111. Schneider A.B., McCurdy A., Chang T., Dudlak D., Magner J.: Metabolic labeling of human thyroglobulin with [35S] sulfate: incorporation into chondroitin 6-sulfate and endoglycosidase-F-susceptible carbohydrate units. Endocrinology 122: 2428-2435 (1988) 112. Fogelfeld L., Schneider A.B.: Inhibition of chondroitin sulfate incorporation into human thyroglobulin by pnitrophenyl-beta-D-xylopyranoside. Endocrinology 126: 1064-1069 (1990) 113. Conte M., Arcaro A., D’Angelo D., Gnata A., Mamone G., Ferranti P., Formisano S., Gentile F. A single chondroitin 6-sulfate oligosaccharide unit at Ser-2730 of human thyroglobulin enhances hormone formation and limits proteolytic accessibility at the carboxyl terminus. Potential insights into thyroid homeostasis and autoimmunity. J. Biol. Chem. 281: 22200-22211 (2006) 114. Evers M.R., Xia G., Kang H.G., Schachner M., Baenziger J.U.: Molecular cloning and characterization of a dermatan-specific N-acetylgalactosamine 4-O-sulfotransferase. J. Biol. Chem. 276: 36344-36353 (2001) 115. Wadeleux P., Nusgens B., Foidart J.M., Lapiere C., Winand R.: Synthesis of basement membrane components by differentiated thyroid cells. Biochim. Biophys. Acta 846: 257-264 (1985) 116. Bürgi-Saville M.E., Reut B., Gerber H., Peter H.J., Paulsson M., Kaempf J., Simon F., Marti U., Gerber H., Bürgi U.: Alginate gel culture allows the retention of extracellular matrix and follicular structure of rat thyroid tissue but does not lead to the formation of follicles by FRTL-5 cells. Thyroid 8: 1147-1155 (1998) 117. Tognella C., Marti U., Peter H.J., Wagner H.E., Glaser C., Kämpf J., Simon F., Häuselmann H.J., Paulsson M., Ruchti C., Bürgi-Saville M.E., Bürgi U., Gerber H.: Follicleforming cat thyroid cell lines synthesizing extracellular matrix and basal membrane components: a new tool for the study of thyroidal morphogenesis. J. Endocrinol. 163: 505-514 (1999) 118. Katoh R., Muramatsu A., Kawaoi A., Komiyama A., Suzuki K., Hemmi A., Katayama S.: Alteration of the basement membrane in human thyroid diseases: an immunohistochemical study of type IV collagen, laminin and heparin sulphate proteoglycan. Virchows Arch. A. Pathol. Anat. Histopathol. 423: 417-424 (1993) 119. Marino M., Pinchera A., McCluskey R.T., Chiovato L.: Megalin in thyroid physiology and pathology. Thyroid 11: 47-56 (2001) 120. Lisi S., Pinchera A., Mc Cluskey R.T., Willnow T.E., Refetoff S., Vitti P., Menconi F., Grasso L., Luchetti F., Collins A.B., Marino M.: Preferential megalin-mediated trancytosis of low-hormonogenic thyroglobulin: a control mechanism for thyroid hormone release. Proc. Natl. Acad. Sci. USA 100: 14858-14863 (2003) 121. Marino M., Andrews D., McCluskey R.T.: Binding of rat thyroglobulin to heparan sulphate proteoglycans. Thyroid 10: 551-559 (2000) 122. Marino M., Friedlander J.A., McCluskey R.T., Andrews D.: Identification of a heparin-binding region of rat thyroglobulin involved in megalin binding. J. Biol. Chem. 274: 30377-30386 (1999) 123. Zheng G., Marino’ M., Zhao J., McCluskey R.T.: Megalin (gp330): a putative endocytic receptor for thyroglobulin (Tg). Endocrinology 139: 1462-1465 (1998) 124. Marinò M., Zheng G., Chiovato L., Pinchera A., Brown D., Andrews D., McCluskey R.T.: Role of megalin (gp330) in transcytosis of thyroglobulin by thyroid cells. A novel function in the control of thyroid hormone release. J. Biol. Chem. 275: 7125-7137 (2000) 125. Gerbil’skiĭ L.V., Maĭle-Avgustinovich S.G., Chernenko Iu.P. [Effect of heparin on the thyroid gland]. Arkh. Anat. Gistol. Embriol. 85(8): 57-61 (1983) 126. Thomson J.E., Baird S.G., Beastall G.H., Ratcliffe W.A., Thomson J.A.: The effect of intravenous heparin infusions on the thyroid stimulating hormone response to thyrotrophin releasing hormone. Br. J. Clin. Pharmacol. 6: 239-242 (1978) 127. Beyer H.K.: Causative investigations of heparininduced rise on thyroid hormone serum levels. Nuklearmedizin 21(1): 36-41 (1982) 128. Jaume J.C., Mendel C.M., Frost P.H., Greenspan F.S., Laughton C.W.: Extremely low doses of heparin release lipase activity into the plasma and can thereby cause artifactual elevations in the serum-free thyroxine concentration as measured by equilibrium dialysis. Thyroid 6: 79-83 (1996) 129. Hou J., Clemmons D.R., Smeekens S.: Expression and characterization of a serine protease that preferentially cleaves insulin-like growth factor binding protein-5. J. Cell. Biochem. 94: 470-484 (2005) 130. Smeland S., Kolset S.O., Lyon M., Norum K.R., Blomhoff R.: Binding of perlecan to transthyretin in vitro. Biochem. J. 326(Pt 3): 829-836 (1997) 131. Underhill C., Dorfman A.: The role of hyaluronic acid in intercellular adhesion of cultured mouse cells. Exp. Cell. Res. 117(1): 155-164 (1978) 132. Qiao R.L., Wang H.S., Yan W., Odekon L.E., Del Vecchio P.J., Smith T.J., Malik A.B.: Extracellular matrix hyaluronan is a determinant of the endothelial barrier. Am. J. Physiol. 269(1 Pt 1): C103- C109 (1995) 133. Shishiba Y., Yanagishita M., Tanaka T., Ozawa Y., Kadowaki N.: Abnormal accumulation of proteoglycan in human thyroid adenocarcinoma tissue. Endocrinol. Jpn 31: 501-507 (1984) 134. Cella M.C., Fibbi G., Cantini C., Del Panta Z., Vannucchi S., Del Rosso M., Cappelletti R., Chiarugi V.P., Crisci C.: Intercellular glycosaminoglycans in human cancer. Tumori 65: 677-686 (1979) 135. Tímár J., Lapis K., Dudás J., Sebestyén A., Kopper L., Kovalszky I.: Proteoglycans and tumor progression: Janusfaced molecules with contradictory functions in cancer. Semin. Cancer Biol. 12: 173-186 (2002) 136. Yip G.W., Smollich M., Götte M.: Therapeutic value of glycosaminoglycans in cancer. Mol. Cancer Ther. 5: 2139-2148 (2006) 137. Grant D.S. Yenisey C., Rose R.W., Tootell M., Santra M., Iozzo R.V.: Decorin suppresses tumor cell-mediated angiogenesis. Oncogene 21: 4765-4777 (2002) 138. Reed C.C., Waterhouse A., Kirby S., Kay P., Owens R.T., McQuillan D.J., Iozzo R.V.: Decorin prevents metastatic spreading of breast cancer. Oncogene 24: 1104-1110 (2005) 139. Moscatello D.K., Santra M., Mann D.M., McQuillan D.J., Wong A.J., Iozzo R.V.: Decorin suppresses tumor cell growth by activating the epidermal growth factor receptor. J. Clin. Invest. 101: 406-412 (1998) 140. Csordás G., Santra M., Reed C.C., Eichstetter I., McQuillan D.J., Gross D., Nugent M.A., Hajnóczky G., Iozzo R.V. Sustained down-regulation of the epidermal growth factor receptor by decorin. A mechanism for controlling tumor growth in vivo. J. Biol. Chem. 275: 32879-32887 (2000) 141. Ständer M., Naumann U., Dumitrescu L., Heneka M., Löschmann P., Gulbins E., Dichgans J., Weller M.: Decorin gene transfer-mediated suppression of TGF-beta synthesis abrogates experimental malignant glioma growth in vivo. Gene Ther. 5: 1187-1194 (1998) 142. Ständer M., Naumann U., Wick W., Weller M.: Transforming growth factor-beta and p-21: multiple molecular targets of decorin-mediated suppression of neoplastic growth. Cell. Tissue Res. 296: 221-227 (1999) 143. Santra M., Skorski T., Calabretta B., Lattime E.C., Iozzo R.V.: De novo decorin gene expression suppresses the malignant phenotype in human colon cancer cells. Proc. Natl. Acad. Sci. USA 92: 7016-7020 (1995) 144. Santra M., Mann D.M., Mercer E.W., Skorski T., Calabretta B., Iozzo R.V.: Ectopic expression of decorin protein core causes a generalized growth suppression in neoplastic cells of various histogenetic origin and requires endogenous p21, an inhibitor of cyclin-dependent kinases. J. Clin. Invest. 100: 149-157 (1997) 145. Nash M.A., Loercher A.E., Freedman R.S.: In vitro growth inhibition of ovarian cancer cells by decorin: synergism of action between decorin and carboplatin. Cancer Res. 59: 6192-6196 (1999) 146. Köninger J., Giese N.A., di Mola F.F., Berberat P., Giese T., Esposito I., Bachem M.G., Büchler M.W., Friess H.: Overexpressed decorin in pancreatic cancer: potential tumor growth inhibition and attenuation of chemotherapeutic action. Clin. Cancer Res. 10: 4776-4783 (2004) 147. Reed C.C., Gauldie J., Iozzo R.V.: Suppression of tumorigenicity by adenovirus-mediated gene transfer of decorin. Oncogene 21: 3688-3695 (2002) 148. Tralhão J.G., Schaefer L., Micegova M., Evaristo C., Schönherr E., Kayal S., Veiga-Fernandes H., Danel C., Iozzo R.V., Kresse H., Lemarchand P.: In vivo selective and distant killing of cancer cells using adenovirusmediated decorin gene transfer. FASEB J. 17: 464-466 (2003) 149. Biglari A., Bataille D., Naumann U., Weller M., Zirger J., Castro M.G., Lowenstein P.R.: Effects of ectopic decorin in modulating intracranial glioma progression in vivo, in a rat syngeneic model. Cancer Gene Ther. 11: 721-732 (2004) 150. Sharma B., Handler M., Eichstetter I., Whitelock J.M., Nugent M.A., Iozzo R.V.: Antisense targeting of perlecan blocks tumor growth and angiogenesis in vivo. J. Clin. Invest. 102: 1599-1608 (1998) 151. Zhou Z., Wang J., Cao R., Morita H., Soininen R., Chan K.M., Liu B., Cao Y., Tryggvason K.: Impaired angiogenesis, delayed wound healing and retarded tumor growth in perlecan heparan sulfate-deficient mice. Cancer Res. 64: 4699-4702 (2004) 152. Sakko A.J., Ricciardelli C., Mayne K., Suwiwat S., LeBaron R.G., Marshall V.R., Tilley W.D., Horsfall D.J.: Modulation of prostate cancer cell attachment to matrix by versican. Cancer Res. 63: 4786-4791 (2003) 153. Ricciardelli C., Sakko A.J., Ween M.P., Russell D.L., Horsfall D.J.: The biological role and regulation of versican levels in cancer. Cancer Metastasis Rev. 28(1-2): 233-245 (2009) 154. Arcinas A., Yen T.Y., Kebebew E., Macher B.A.: Cell surface and secreted protein profiles of human thyroid cancer cell lines reveal distinct glycoprotein patterns. J. Proteome Res. 8: 3958-3968 (2009) 155. Moreaux J., Veyrune J.L., De Vos J., Klein B.: APRIL is overexpressed in cancer: link with tumor progression. BMC Cancer 9: 83 (2009) 156. Bischof D., Elsawa S.F., Mantchev G., Yoon J., Michels G.E., Nilson A., Sutor S.L., Platt J.L., Ansell S.M., von Bulow G., Bram R.J.: Selective activation of TACI by syndecan-2. Blood 107: 3235-3242 (2006) 157. Bologna-Molina R., González-González R., Mosqueda-Taylor A., Molina-Frechero N., Damián-Matsu-mura P., Dominguez-Malagón H.: Expression of syndecan-1 in papillary carcinoma of the thyroid with extracapsular invasion. Arch. Med. Res. 41: 33-37 (2010) 158. Bernfield M., Götte M., Park P.W., Reizes O., Fitzgerald M.L., Lincecum J., Zako M.: Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68: 729-777 (1999) 159. Sanderson R.D., Yang Y., Suva L.J., Kelly T.: Heparan sulfate proteoglycans and heparanase-partners in osteolytic tumor growth and metastasis. Matrix Biol. 23: 341-352 (2004) 160. Inki P., Jalkanen M.: The role of syndecan-1 in malignances. Ann. Med. 28: 63-67 (1996) 161. Ito Y., Yoshida H., Nakano K., Takamura Y., Miya A., Kobayashi K., Yokozawa T., Matsuzuka F., Matsuura N., Kuma K., Miyauchi A.: Syndecan-1 expression in thyroid carcinoma: stromal expression followed by epithelial expression is significantly correlated with dedifferentiation. Histopathology 43: 157-164 (2003) 162. Day R.M., Hao X., Ilyas M., Daszak P., Talbot I.C, Forbes A.: Changes in the expression of syndecan-1 in the colorectal adenocarcinoma sequence. Virchows Arch. 434: 121-125 (1999) 163. Inki P., Joensuu H., Grenman R., Klemi P., Jalkanen M.: Association between syndecan-1 expression and clinical outcome in squamous cell carcinoma of the head and neck. Br. J. Cancer 70: 319-323 (1994) 164. Kumar-Singh S., Jacobs W., Dhaene K., et al.: Syndecan-1 expression in malignant mesothelioma: correlation with cell differentiation, WT1 expression, and clinical outcome. J. Pathol. 186: 300-305 (1998) 165. Matsumoto A., Ono M., Fujimoto Y., Gallo R.L., Bernfiled M., Kohgo Y.: Reduced expression of syndecan-1 in human hepatocellular carcinoma with high metastatic potential. Int. J. Cancer 74: 482-491 (1997) 166. Nackaerts K., Verbeken E., Deneffe G., Vanderschueren B., Demedts M., David G.: Heparan sulfate proteoglycan expression in human lung-cancer cells. Int. J. Cancer 74: 335-345 (1997) 167. Pulkkinen J.O., Penttinen M., Jalkanen M., Klemi P., Grenman R.: Syndecan-1: a new prognostic marker in laryngeal cancer. Acta Otolaryngol. 117: 312-315 (1997) 168. Toyoshiima E., Ohsaki Y., Nishigaki Y., Fujimioto Y., Kohgo Y., Kikuchi K.: Expression of syndecan-1 is common in human lung cancers independent of expression of epidermal growth factor receptor. Lung Cancer 31: 193-202 (2001) 169. Rintala M., Inki P., Kelmi P., Jalkanen M., Grenman S.: Association of syndecan-1 with tumor grade and histology in primary invasive cervical carcinoma. Gynecol. Oncol. 75: 372-378 (1999) 170. Mikami S., Ohashi K., Usui Y., et al.: Loss of syndecan-1 and increased expression of heparanase in invasive esophageal carcinomas. Jpn J. Cancer Res. 92: 1062-1073 (2001) 171. Wiksten J.P., Lundin J., Nordling S., Kokkola A., Haglund C.: A prognostic value of syndecan-1 in gastric cancer. Anticancer Res. 20: 4905-4908 (2000) 172. Fujiya M., Watari J., Ashida T., et al.: Reduced expression of syndecan-1 affects metastatic potential outcome in patients with colorectal cancer. Jpn J. Cancer Res. 92: 1074-1081 (2001) 173. Stanley M.J., Stanley M.W., Sanderson R.D., Zera R.: Syndecan-1 expression is induced in the stroma of infiltrating breast carcinoma. Am. J. Clin. Pathol. 112: 377-383 (1999) 174. Wiksten J.P., Lundin J., Nordling S., et al.: Epithelial and stromal syndecan-1 expression as predictor of outcome in patients with gastric cancer. Int. J. Cancer 95: 1-6 (2001) 175. Mitselou A., Ioachim E., Peschos D., Charalabopoulos K., Michael M., Agnantis N.J., Vougiouklakis T.: E-cadherin adhesion molecule and syndecan-1 expression in various thyroid pathologies. Exp. Oncol. 29: 54-60 (2007) 176. Filmus J.: Glypicans in growth control and cancer. Glycobiology 11(3): 19R-23R (2001) 177. Filmus J., Capurro M.: The role of glypican-3 in the regulation of body size and cancer. Cell Cycle 7: 2787-2790 (2008) 178. Aldred M.A., Ginn-Pease M.E., Morrison C.D., Popkie A.P., Gimm O., Hoang-Vu C., Krause U., Dralle H., Jhiang S.M., Plass C., Eng C.: Caveolin-1 and caveolin-2, together with three bone morphogenetic protein-related genes, may encode novel tumor suppressors down-regulated in sporadic follicular thyroid carcinogenesis. Cancer Res. 63: 2864-2871 (2003) 179. Yamanaka K., Ito Y., Okuyama N., Noda K., Matsumoto H., Yoshida H., Miyauchi A., Capurro M., Filmus J., Miyoshi E.: Immunohistochemical study of glypican 3 in thyroid cancer. Oncology 73(5-6): 389-394 (2007) 180. Liu N., Xu X.M., Chen J., Wang L., Yang S., Underhill C.B., Zhang L.: Hyaluronan-binding peptide can inhibit tumor growth by interacting with Bcl-2. Int. J. Cancer 109: 49-57 (2004) 181. Sanderson R.D., Yang Y., Kelly T., MacLeod V., Dai Y., Theus A.: Enzymatic remodeling of heparan sulfate proteoglycans within the tumor microenvironment: growth regulation and the prospect of new cancer therapies. J. Cell. Biochem. 96: 897-905 (2005) 182. Iversen P.O., Sorensen D.R., Benestad H.B.: Inhibitors of angiogenesis selectively reduce the malignant cell load in rodent models of human myeloid leukemias. Leukemia 16: 376-381 (2002) 183. Cohen I., Pappo O., Elkin M., San T., Bar-Shavit R., Hazan R., Peretz T., Vlodavsky I., Abramovitch R.: Heparanase promotes growth, angiogenesis and survival of primary breast tumors. Int. J. Cancer 118: 1609-1617 (2006) 184. Toole B.P.: Hyaluronan: from extracellular glue to pericellular cue. Nat. Rev. Cancer 4: 528-539 (2004) 185. Böhm J., Niskanen L., Tammi R., Tammi M., Eskelinen M., Pirinen R., Hollmen S., Alhava E., Kosma V.M.: Hyaluronan expression in differentiated thyroid carcinoma. J. Pathol. 196: 180-185 (2002) 186. Lokeshwar V.B., Iida N., Bourguignon L.Y.: The cell adhesion molecule, GP116, is a new CD44 variant (ex14/v10) involved in hyaluronic acid binding and endothelial cell proliferation. J. Biol. Chem. 271: 23853-23864 (1996) 187. Rooney P., Kumar S., Ponting J., Wang M.: The role of hyaluronan in tumour neovascularization (review). Int. J. Cancer 60: 632-636 (1995) 188. Jaracz S., Chen J., Kuznetsova L.V., Ojima I.: Recent advances in tumor-targeting anticancer drug conjugates. Bioorg. Med. Chem. 13: 5043-5054 (2005) 189. Eliaz R.E., Szoka F.C.,Jr: Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells. Cancer Res. 61: 2592-2601 (2001) 190. Peer D., Margalit R.: Tumor-targeted hyaluronan nanoliposomes increase the antitumor activity of liposomal Doxorubicin in syngeneic and human xenograft mouse tumor models. Neoplasia 6: 343-353 (2004) 191. Luo Y., Bernshaw N.J., Lu Z.R., Kopecek J., Prestwich G.D.: Targeted delivery of doxorubicin by HPMA copolymer-hyaluronan bioconjugates. Pharm. Res. 19: 396-402 (2002) 192. Speranza A., Pellizzaro C., Coradini D.: Hyaluronic acid butyric esters in cancer therapy. Anticancer Drugs 16: 373-379 (2005) 193. Tassone P., Goldmacher V.S., Neri P., Gozzini A., Shammas M.A., Whiteman K.R., Hylander-Gans L.L., Carrasco D.R., Hideshima T., Shringarpure R., Shi J., Allam C.K., Wijdenes J., Venuta S., Munshi N.C., Anderson K.C.: Cytotoxic activity of the maytansinoid immunoconjugate B-B4-DM1 against CD138+ multiple myeloma cells. Blood 104: 3688-3696 (2004) 194. Lee C.M., Tanaka T., Murai T., Kondo M., Kimura J., Su W., Kitagawa T., Ito T., Matsuda H., Miyasaka M.: Novel chondroitin sulfate-binding cationic liposomes loaded with cisplatin efficiently suppress the local growth and liver metastasis of tumor cells in vivo. Cancer Res. 62: 4282-4288 (2002) 195. Lokeshwar V.B., Cerwinka W.H., Isoyama T., Lokeshwar B.L.: HYAL1 hyaluronidase in prostate cancer: a tumor promoter and suppressor. Cancer Res. 65: 7782-7789 (2005) 196. Knudson W.: Tumor-associated hyaluronan. Providing an extracellular matrix that facilitates invasion. Am. J. Pathol. 148: 1721-1726 (1996) 197. Turley E.A.: Hyaluronan and cell locomotion. Cancer Metastasis Rev. 11: 21-30 (1992) 198. Zetter B.R.: Angiogenesis and tumor metastasis. Annu. Rev. Med. 49: 407-424 (1998) 199. Yu Q., Stamenkovic I.: Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev. 13: 35-48 (1999) 200. Kayser L., Broholm H., Francis D., Perrild H., Olsen B.E., Bendtzen K., Høyer P.E.: Immunocytochemical localization of tumor necrosis factor alpha in thyroid tissues from patients with neoplastic or autoimmune thyroid disorders. Autoimmunity 23: 91-97 (1996) 201. Eggo M.C., Hopkins J.M., Franklyn J.A., Johnson G.D., Sanders D.S., Sheppard M.C.: Expression of fibroblast growth factors in thyroid cancer. J. Clin. Endocrinol. Metab. 80: 1006-1011 (1995) 202. Auvinen P., Tammi R., Parkkinen J., Tammi M., Agren U., Johansson R., Hirvikoski P., Eskelinen M., Kosma V.M.: Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival. Am. J. Pathol. 156: 529-536 (2000) 203. Anttila M.A., Tammi R.H., Tammi M.I., Syrjänen K.J., Saarikoski S.V., Kosma V.M.: High levels of stromal hyaluronan predict poor disease outcome in epithelial ovarian cancer. Cancer Res. 60: 150-155 (2000) 204. Böhm J.P., Niskanen L.K., Pirinen R.T., Kiraly K., Kellokoski J.K., Moisio K.I., Eskelinen M.J., Tulla H.E., Hollmen S., Alhava E.M., Kosma V.M.: Reduced CD44 standard expression is associated with tumour recurrence and unfavourable outcome in differentiated thyroid carcinoma. J. Pathol. 192: 321-327 (2000) 205. Gao A.C., Lou W., Sleeman J.P., Isaacs J.T.: Metastasis suppression by the standard CD44 isoform does not require the binding of prostate cancer cells to hyaluronate. Cancer Res. 58: 2350-2352 (1998) 206. Pirinen R., Tammi R., Tammi M., Hirvikoski P., Parkkinen J.J., Johansson R., Böhm J., Hollmén S., Kosma V.M.: Prognostic value of hyaluronan expression in non-small-cell lung cancer: Increased stromal expression indicates unfavorable outcome in patients with adenocarcinoma. Int. J. Cancer 95: 12-17 (2001) 207. Karjalainen J.M., Tammi R.H., Tammi M.I., Eskelinen M.J., Agren U.M., Parkkinen J.J., Alhava E.M., Kosma V.M.: Reduced level of CD44 and hyaluronan associated with unfavorable prognosis in clinical stage I cutaneous melanoma. Am. J. Pathol. 157: 957-965 (2000) 208. Hirvikoski P., Tammi R., Kumpulainen E., Virtaniemi J., Parkkinen J.J., Tammi M., Johansson R,: Agren U, Karhunen J, Kosma VM. Irregular expression of hyaluronan and its CD44 receptor is associated with metastatic phenotype in laryngeal squamous cell carcinoma. Virchows Arch. 434: 37-44 (1999) 209. Bazil V., Strominger J.L.: Metalloprotease and serine protease are involved in cleavage of CD43, CD44, and CD16 from stimulated human granulocytes. Induction of cleavage of L-selectin via CD16. J. Immunol. 152: 1314-1322 (1994) 210. Hasan N.M., Adams G.E., Joiner M.C., Marshall J.F., Hart I.R.: Hypoxia facilitates tumour cell detachment by reducing expression of surface adhesion molecules and adhesion to extracellular matrices without loss of cell viability. Br. J. Cancer 77: 1799-1805 (1998) 211. Weigel P.H., Hascall V.C., Tammi M.: Hyaluronan synthases. J. Biol. Chem. 272: 13997-14000 (1997) 212. Itano N., Sawai T., Yoshida M., Lenas P., Yamada Y., Imagawa M., Shinomura T., Hamaguchi M., Yoshida Y., Ohnuki Y., Miyauchi S., Spicer A.P., McDonald J.A., Kimata K.: Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J. Biol. Chem. 274: 25085-25092 (1999) 213. Jacobson A., Brinck J., Briskin M.J., Spicer A.P., Heldin P.: Expression of human hyaluronan synthases in response to external stimuli. Biochem. J. 348(Pt 1): 29-35 (2000) 214. Girish K.S., Kemparaju K.: The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci. 80: 1921-1943 (2007) 215. Heldin P.: Importance of hyaluronan biosynthesis and degradation in cell differentiation and tumor formation. Braz. J. Med. Biol. Res. 36: 967-973 (2003) 216. Simpson M.A., Wilson C.M., McCarthy J.B.: Inhibition of prostate tumor cell hyaluronan synthesis impairs subcutaneous growth and vascularization in immunocompromised mice. Am. J. Pathol. 161: 849-857 (2002) 217. Itano N., Sawai T., Atsumi F., Miyaishi O., Taniguchi S., Kannagi R., Hamaguchi M., Kimata K.: Selective expression and functional characteristics of three mammalian hyaluronan synthases in oncogenic malignant transformation. J. Biol. Chem. 279: 18679-18687 (2004) 218. Yabushita H., Kishida T., Fusano K., Kanyama K., Zhuo L., Itano N., Kimata K., Noguchi M.: Role of hyaluronan and hyaluronan synthase in endometrial cancer. Oncol. Rep. 13: 1101-1105 (2005) 219. Zahalka M.A., Okon E., Gosslar U., Holzmann B., Naor D.: Lymph node (but not spleen) invasion by murine lymphoma is both CD44- and hyaluronate-dependent. J. Immunol. 154: 5345-5355 (1995) 220. Bertrand P., Courel M.N., Maingonnat C., Jardin F., Tilly H., Bastard C.: Expression of HYAL2 mRNA, hyaluronan and hyaluronidase in B-cell non-Hodgkin lymphoma: relationship with tumor aggressiveness. Int. J. Cancer 113: 207-212 (2005) 221. Csoka A.B., Frost G.I., Stern R.: The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol. 20: 499-508 (2001) 222. Jacobson A., Salnikov A., Lammerts E., Roswall P., Sundberg C., Heldin P., Rubin K., Heldin N.E.: Hyaluronan content in experimental carcinoma is not correlated to interstitial fluid pressure. Bioch. Biophys. Res. Commun. 305: 1017-1023 (2003) 223. Rudzki Z., Jothy S.: CD44 and the adhesion of neoplastic cells. Mol. Pathol. 50(2): 57-71 (1997) 224. Griffith O.L., Melck A., Jones S.J., Wiseman S.M.: Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J. Clin. Oncol. 24: 5043-5051 (2006) 225. Ermak G., Jennings T., Robinson L., Ross J.S., Figge J.: Restricted patterns of CD44 variant exon expression in human papillary thyroid carcinoma. Cancer Res. 56: 1037-1042 (1996) 226. Kurozumi K., Nakao K., Nishida T., Nakahara M., Ogino N., Tsujimoto M.: Significance of biologic aggressiveness and proliferating activity in papillary thyroid carcinoma. World J. Surg. 22: 1237-1242 (1998) 227. Figge J., del Rosario A.D., Gerasimov G., Dedov I., Bronstein M., Troshina K., Alexandrova G., Kallakury B.V., Bui H.X., Bratslavsky G., et al.: Preferential expression of the cell adhesion molecule CD44 in papillary thyroid carcinoma. Exp. Mol. Pathol. 61: 203-211 (1994) 228. Liu Y., Jiang C., Tan Y.: Pathological study on the expression of cell adhesion molecules and metastasis suppressor gene in thyroid follicular carcinoma and papillary carcinoma. Zhonghua Bing Li Xue Za Zhi 31: 322-326 (2002) 229. Takano T., Sumizaki H., Nakano K., Matsuzuka F., Kuma K., Amino N.: Increased expression of CD44 variants in differentiated thyroid cancers. Jpn J. Cancer Res. 87: 1245-1250 (1996) 230. Gu J., Daa T., Kashima K., Yokoyama S., Nakayama I., Noguchi S.: Expression of splice variants of CD44 in thyroid neoplasms derived from follicular cells. Pathol. Int. 48: 184-190 (1998) 231. Ponta H., Sherman L., Herrlich P.A.: CD44: from adhesion molecules to signalling regulators. Nat. Rev. Mol. Cell. Biol. 4: 33-45 (2003) 232. Chhieng D.C., Ross J.S., McKenna B.J.: CD44 immunostaining of thyroid fine-needle aspirates differentiates thyroid papillary carcinoma from other lesions with nuclear grooves and inclusions. Cancer 81: 157-162 (1997) 233. Kitahori Y., Cho M., Konishi N., Ohshima M., Matsui E., Ohnishi T., Imai S., Hiasa Y.: Overexpression of CD44 variant transcripts in rat transplantable thyroid carcinoma lines demonstrating lung metastasis. Int. J. Oncol. 13: 505-511 (1998) 234. Ross J.S., del Rosario A.D., Sanderson B., Bui H.X.: Selective expression of CD44 cell-adhesion molecule in thyroid papillary carcinoma fine-needle aspirates. Diagn. Cytopathol. 14: 287-291 (1996) 235. Kim J.Y., Cho H., Rhee B.D., Kim H.Y.: Expression of CD44 and cyclin D1 in fine needle aspiration cytology of papillary thyroid carcinoma. Acta Cytol. 46: 679-683 (2002) 236. Liu J., Brown R.E.: Immunohistochemical detection of epithelialmesenchymal transition associated with stemness phenotype in anaplastic thyroid carcinoma. Int. J. Clin. Exp. Pathol. 3: 755-762 (2010) 237. Maruta J., Hashimoto H., Yamashita H., Yamashita H., Noguchi S.: Immunostaining of galectin-3 and CD44v6 using fine-needle aspiration for distinguishing follicular carcinoma from adenoma. Diagn. Cytopathol. 31: 392-396 2004) 238. Finn S.P., Smyth P., Cahill S., Streck C., O’Regan E.M., Flavin R., Sherlock J., Howells D., Henfrey R., Cullen M., Toner M., Timon C., O’Leary J.J., Sheils O.M.: Expression microarray analysis of papillary thyroid carcinoma and benign thyroid tissue: emphasis on the follicular variant and potential markers of malignancy. Virchows Arch. 450: 249-260 (2007) 239. Takano T., Sumizaki H., Amino N.: Detection of CD44 variants in fine needle aspiration biopsies of thyroid tumor by RT-PCR. J. Exp. Clin. Cancer Res. 16: 267-271 (1997) 240. Leung K.: 89Zr-N-Succinyldesferal-anti-CD44v6 chimeric monoclonal antibody U36. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US): 2004-2010, 2010 241. Leung K.: 124I-Anti-CD44v6 chimeric monoclonal antibody U36. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004-2010, 2007 242. Fortin M.A., Salnikov A.V., Nestor M., Heldin N.E., Rubin K., Lundqvist H.: Immuno-PET of undifferentiated thyroid carcinoma with radioiodine-labelled antibody cMAb U36: application to antibody tumour uptake studies. Eur. J. Nucl. Med. Mol. Imaging 34: 1376-1387 (2007) 243. Castellone M.D., Celetti A., Guarino V., Cirafici A.M., Basolo F., Giannini R., Medico E., Kruhoffer M., Orntoft T.F., Curcio F., Fusco A., Melillo R.M., Santoro M.: Autocrine stimulation by osteopontin plays a pivotal role in the expression of the mitogenic and invasive phenotype of RET/PTC-transformed thyroid cells. Oncogene 23: 2188-2196 (2004) 244. Guarino V., Faviana P., Salvatore G., Castellone M.D., Cirafici A.M., De Falco V., Celetti A., Giannini R., Basolo F., Melillo R.M., Santoro M.: Osteopontin is overexpressed in human papillary thyroid carcinomas and enhances thyroid carcinoma cell invasiveness. J. Clin. Endocrinol. Metab. 90: 5270-5278 (2005) 245. Weber G.F.: The metastasis gene osteopontin: a candidate target for cancer therapy. Biochim. Biophys. Acta 1552(2): 61-85 (2001) 246. Kim S.W., Ho S.C., Hong S.J., Kim K.M., So E.C., Christoffolete M., Harney J.W.: A novel mechanism of thyroid hormone-dependent negative regulation by thyroid hormone receptor, nuclear receptor corepressor (NCoR), and GAGA-binding factor on the rat cD44 promoter. J. Biol. Chem. 280: 14545-14555 (2005) 247. Schneider A.B., Dudlak D.: Differential incorporation of sulfate into the chondroitin chain and complex carbohydrate chains of human thyroglobulin: studies in normal and neoplastic thyroid tissue. Endocrinology 124: 356-362 (1989) 248. Emoto N., Kunii Y.K., Ashizawa M., Oikawa S., Shimizu K., Shimonaka M., Toyoda A., Toyoda H.: Reduced sulfation of chondroitin sulfate in thyroglobulin derived from human papillary thyroid carcinomas. Cancer Sci. 98: 1577-1581 (2007) 249. Liu Y., Yang H., Otaka K., Takatsuki H., Sakanishi A.: Effects of vascular endothelial growth factor (VEGF) and chondroitin sulfate A on human monocytic THP-1 cell migration. Colloids Surf. B Biointerfaces 43(3-4): 216-220 (2005) 250. Pumphrey C.Y., Theus A.M., Li S., Parrish R.S., Sanderson R.D.: Neoglycans, carbodiimide-modified glycosaminoglycans: a new class of anticancer agents that inhibit cancer cell proliferation and induce apoptosis. Cancer Res. 62: 3722-3728 (2002) 251. Ito N., Yokota M., Nagaike C., Morimura Y., Hatake K., Tanaka O., Matsunaga T.: Simultaneous expression of keratan sulphate epitope (a sulphated poly-N-acetyllactosamine) and blood group ABH antigens in papillary carcinomas of the human thyroid gland. Histochem. J. 28: 613-623 (1996) 252. Magro G., Perissinotto D., Schiappacassi M., Goletz S., Otto A., Muller E.C., Bisceglia M., Brown G., Ellis T., Grasso S., Colombatti A., Perris R.: Proteomic and postproteomic characterization of keratan sulfate-glycanated isoforms of thyroglobulin and transferrin uniquely elaborated by papillary thyroid carcinomas. Am. J. Pathol. 163: 183-196 (20030 253. Blackhall F.H., Merry C.L., Davies E.J., Jayson G.C.: Heparan sulfate proteoglycans and cancer. Br. J. Cancer 85: 1094-1098 (2001) 254. De Nigris F., Visconti R., Cerutti J., Califano D., Mineo A., Santoro M., Santelli G., Fusco A.: Overexpression of the HIP gene coding for a heparin/heparan sulfate-binding protein in human thyroid carcinomas. Cancer Res. 58: 4745-4751 (1998) 255. Kato M., Maeta H., Kato S., Shinozawa T., Terada T.: Immunohistochemical and in situ hybridization analyses of midkine expression in thyroid papillary carcinoma. Mod. Pathol. 13: 1060-1065 (2000) 256. Greil W., Rafferzeder M., Bechtner G., Gärtner R.: Release of an endothelial cell growth factor from cultured porcine thyroid follicles. Mol. Endocrinol. 3: 858-867 (1989) 257. Logan A., Black E.G., Gonzalez A.M., Buscaglia M., Sheppard M.C.: Basic fibroblast growth factor: an autocrine mitogen of rat thyroid follicular cells? Endocrinology 130: 2363-2372 (1992) 258. Emoto N., Isozaki O., Arai M., Murakami H., Shizume K., Baird A., Tsushima T., Demura H.: Identification and characterization of basic fibroblast growth factor in porcine thyroids. Endocrinology 128: 58-64 (1991) 259. Emoto N., Isozaki O., Ohmura E., Shizume K., Tsushima T., Demura H.: Degradation of cell surface heparan sulfates decreases the high affinity binding of basic FGF to endothelial cells, but not to FRTL-5 rat thyroid cells. Thyroid 5: 455-460 (1995) 260. Emoto N., Onose H., Sugihara H., Minami S., Shimizu K., Wakabayashi I.: Fibroblast growth factor-2 free from extracellular matrix is increased in papillary thyroid carcinomas and Graves’ thyroids. Thyroid 8: 491-497 (1998) 261. Emoto N., Shimizu K., Onose H., Ishii S., Sugihara H., Wakabayashi I.: A subpopulation of fibroblast growth factor-2-binding heparan sulfate is lost in human papillary thyroid carcinomas. Thyroid 10: 843-849 (2000) 262. Xu X., Quiros R.M., Maxhimer J.B., Jiang P., Marcinek R., Ain K.B., Platt J.L., Shen J., Gattuso P., Prinz R.A.: Inverse correlation between heparan sulfate composition and heparanase gene expression in thyroid papillary carcinomas: a potential role in tumor metastasis. Clin. Cancer Res. 9(16 Pt 1): 5968-5979 (2003) 263. Buchs A.E., Zehavi S., Sher O., Yeheskely E., Muggia-Sulam M,: Sherman Y, Rapoport MJ. Heparanase, galectin-3, and tissue factor mRNA are expressed in benign neoplasms of the thyroid. Endocrine 22: 81-84 (2003) 264. Klerk C.P., Smorenburg S.M., Otten H.M., Lensing A.W., Prins M.H., Piovella F., Prandoni P., Bos M.M., Richel D.J., van Tienhoven G., Büller H.R.: The effect of low molecular weight heparin on survival in patients with advanced malignancy. J. Clin. Oncol. 23: 2130-2135 (2005) 265. Whitelock J.M., Melrose J., Iozzo R.V.: Diverse cell signaling events modulated by perlecan. Biochemistry 47: 11174-11183 (2008) 266. Silbert J.E., Sugumaran G.: A starting place for the road to function. Glycoconj J. 19: 227-237 (2002) 267. Filla M.S., Dam P., Rapraeger A.C.: The cell surface proteoglycan syndecan-1 mediates fibroblast growth factor-2 binding and activity. J. Cell. Physiol. 174: 310-321 (1998) 268. Rapraeger A., Jalkanen M., Bernfield M.: Cell surface proteoglycan associates with the cytoskeleton at the basolateral cell surface of mouse mammary epithelial cells. J. Cell. Biol. 103: 2683-2696 (1986) 269. Stanley M.J., Liebersbach B.F., Liu W., Anhalt D.J., Sanderson R.D.: Heparan sulfate-mediated cell aggregation. Syndecans-1 and -4 mediate intercellular adhesion following their transfection into human B lymphoid cells. J. Biol. Chem. 270: 5077-5083 (1995) 270. Salmvirta M., Jalkanen M.: Syndecan family of cell surface proteoglycans: developmentally regulated receptors for extracellular effector molecules. Experientia 51: 863-872 (1995) 271. Liebersbach B.F., Sanderson R.D.: Expression of syndecan-1 inhibits cell invasion into type I collagen. J. Biol. Chem. 269: 20013-20019 (1994) 272. Yamagata M., Suzuki S., Akiyama S.K., Yamada K.M., Kimata K.: Regulation ofcell-substrate adhesion by proteoglycans immobilized on extracellular substrates. J. Biol. Chem. 264: 8012-8018 (1989) 273. Bode-Lesniewska B., Dours-Zimmermann M.T., Odermatt B.F., Briner J., Heitz P.U., Zimmermann D.R.: Distribution of the large aggregating proteoglycan versican in adult human tissues. J. Histochem. Cytochem. 44: 303-312 (1996) 274. Bhardwaj A., Frankel W.L., Pellegata N.S., Wen P., Prasad M.L.: Intracellular versican expression in mesenchymal spindle cell tumors contrasts with extracellular expression in epithelial and other tumors: a tissue microarray-based study. Appl. Immunohistochem. Mol. Morphol. 16: 263-266 (2008) 275. Zimmermann D.R., Dours-Zimmermann M.T., Schubert M., Bruckner-Tuderman L.: Versican is expressed in the proliferating zone in the epidermis and in association with the elastic network of the dermis. J. Cell. Biol. 124: 817-825 (1994) 276. Naso M.F., Zimmermann D.R., Iozzo R.V.: Characterization of the complete genomic structure of the human versican gene and functional analysis of its promoter. J. Biol. Chem. 269: 32999-33008 (1994) 277. Lebaron R.G.: Versican. Perspect. Dev. Neurobiol. 3: 261-271 (1996) 278. Cross N.A., Chandrasekharan S., Jokonya N., Fowles A., Hamdy F.C., Buttle D.J., Eaton C.L.: The expression and regulation of ADAMTS-1, -4, -5, -9, and -15, and TIMP-3 by TGFbeta1 in prostate cells: relevance to the accumulation of versican. Prostate 63: 269-275 (2005) 279. Pirinen R., Leinonen T., Böhm J., Johansson R., Ropponen K., Kumpulainen E., Kosma V.M.: Versican in nonsmall cell lung cancer: relation to hyaluronan, clinicopathologic factors, and prognosis. Hum. Pathol. 36: 44-50 (2005) 280. Matsumoto K., Kamiya N., Suwan K., Atsumi F., Shimizu K., Shinomura T., Yamada Y., Kimata K., Watanabe H.: Identification and characterization of versican/PGM aggregates in cartilage. J. Biol. Chem. 281: 18257-18263 (2006) 281. Merle B., Malaval L., Lawler J., Delmas P., Clezardin P.: Decorin inhibits cell attachment to thrombospondin-1 by binding to a KKTR-dependent cell adhesive site present within the N-terminal domain of thrombospondin-1. J. Cell. Biochem. 67: 75-83 (1997) 282. Merle B., Durussel L., Delmas P.D., Clezardin P.: Decorin inhibits cell migration through a process requiring its glycosaminoglycan side chain. J. Cell. Biochem. 75: 538-546 (1999) 283. Yamaguchi Y., Ruoslahti E.: Expression of human proteoglycan in Chinese hamster ovary cells inhibits cell proliferation. Nature 336: 244-246 (1988) 284. Troup S., Njue C., Kliewer E.V., Parisien M., Roskelley C., Chakravarti S., Roughley P.J., Murphy L.C., Watson P.H.: Reduced expression of the small leucine-rich proteoglycans, lumican, and decorin is associated with poor outcome in node-negative invasive breast cancer. Clin. Cancer Res. 9: 207-214 (2003) 285. Nash M.A., Deavers M.T., Freedman R.S.: The expression of decorin in human ovarian tumors. Clin. Cancer Res. 8: 1754-1760 (2002) 286. Arnaldi L.A., Borra R.C., Maciel R.M., Cerutti J.M.: Gene expression profiles reveal that DCN, DIO1, and DIO2 are underexpressed in benign and malignant thyroid tumors. Thyroid 15: 210-221 (2005) 287. Papakonstantinou E., Roth M., Karakiulakis G.: Isolation and characterization of glycosaminoglycans from human atheromatosous vessels. Methods Mol. Med. 52: 123-136 (2001) 288. Papakonstantinou E., Kouri F.M., Karakiulakis G., Klagas I., Elckelberg O.: Increased hyaluronic acid content in idiopathic pulmonary arterial hypertension. Eur. Respir. J. 32: 1504-1512 (2008) |
|
Relative Papers |