Τόμος 16 (1998) – Τεύχος 3 – Άρθρο 3 – Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Ελληνική Έκδοση – Volume 16 (1998) – Issue 3 – Article 3 – Epitheorese Klinikes Farmakologias και Farmakokinetikes-Greek Edition

 

Τίτλος – Title

Οι Πρωτεΐνες Συγκόλλησης Ιντεγκρίνες και Κατχερίνες ως Στόχος για την Ανάπτυξη Νέων Αντινεοπλασματικών Χημειοθεραπευτικών

Cell Adhesion as A Target for the Development of New Anticancer Therapeutics

Συγγραφέας – Author

Ιωάννης Σ. Βιζιριανάκης1,2, Αστέριος Σ. Τσιφτσόγλου1 , Randall H. Kramer2

1 Εργαστήριο Φαρμακολογίας, Τμήμα Φαρμακευτικής, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, 540 06 Θεσσαλονίκη, και 2 Tumor Biology Laboratory, Departments of Stomatology and Anatomy, University of California, San Francisco, CA 94143-0512

Ioannis S. Vizirianakis1,2, Asterios S. Tsift­soglou2, Randall H. Kramer1

1 Tumor Biology Laboratory, Departments of Stomatology and Anatomy, UCSF, HSW 604-0512, San Francisco, CA 94143-0512, USA 2 Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki 540 06, Greece

Παραπομπή – Citation

Βιζιριανάκης,Ι.Σ., Τσιφτσόγλου,Α.Σ., Kramer,R.Η. : Οι Πρωτεΐνες Συγκόλλησης Ιντεγκρίνες και Κατχερίνες ως Στόχος για την Ανάπτυξη Νέων Αντινεοπλασματικών Χημειοθεραπευτικών , Επιθεώρηση Κλιν. Φαρμακολ. Φαρμακοκινητ. 16 : 149-160 (1998)

Vizirianakis,I.S., Tsift­soglou,A.S., Kramer,R.Η. : Cell Adhesion as A Target for the Development of New Anticancer Therapeutics, Epitheorese Klin. Farmakol. Farmakokinet. 16: 149-160 (1998)

Ημερομηνία Δημοσιευσης – Publication Date
20-12-1998
Γλώσσα Πλήρους Κειμένου –
Full Text Language

Ελληνικά – Greek

Παραγγελία – Αγορά –
Order – Buy
Ηλεκτρονική Μορφή: pdf (15 €)
Digital Type: pdf (15 )
pharmakonpress[at]pharmakonpress[.]gr
Λέξεις κλειδιά – Keywords

Κυτταρική συγκόλληση, ιντεγκρίνες, κατχερίνες, αντινεοπλασματικά φάρμακα

Cell adhesion, integrins, cadherins, anticancer therapeutics
Λοιποί Όροι – Other Terms

Άρθρο

Article

Περίληψη – Summary

Δυστυχώς ακόμη και σήμερα η χημειοθεραπευτική αντιμετώπιση του καρκίνου συνεχίζει να βασίζεται κυρίως σε κυτταροτοξικά φάρμακα (αντιμεταβολίτες, αντιβιοτικά, αντιμιτωτικά, αναστολείς ενζύμων, κ.λπ.) που αναστέλλουν την ανάπτυξη και τη διασπορά των όγκων (μετάσταση) με περιορισμένη βέβαια επιτυχία. Έτσι, η ανάγκη για νέα φάρμακα με περισσότερο εξειδικευμένο μηχανισμό δράσης ή παρέμβασης στην ανάπτυξη των όγκων και ιδιαίτερα στην μετάσταση είναι σήμερα πλέον επιτακτική. Οι πρόσφατες ανακαλύψεις που έγιναν στη βασική κυτταρική και μοριακή βιολογία του καρκινικού κυττάρου διευρύνουν τους ορίζοντες και έτσι νέοι στόχοι-κυτταρικές διεργασίες ανεκαλύφθησαν και προσετέθησαν στο σχεδιασμό ανάπτυξης νέων χημειοθεραπευτικών αντινεοπλασματικών φαρμάκων. Ειδικότερα, διεργασίες όπως η αγγειογένεση, η απόπτωση, η διαφοροποίηση, η ρύθμιση ογκογονιδίων και ογκοκατασταλτικών γονιδίων, η συγκόλληση και η μετανάστευση των κυττάρων αποτελούν ενδιαφέροντες στόχους δράσης για αυτά τα νέα φάρμακα. Το παρόν άρθρο επικεντρώνεται επιλεκτικά στο βιολογικό ρόλο των ιντεγκρινών και των κατχερινών που αποτελούν δύο ομάδες σημαντικών πρωτεϊνών συγκόλλησης των κυττάρων και συμβάλλουν καθοριστικά στη συμπεριφορά του καρκινικού κυττάρου. Κεντρικό θέμα του άρθρου συνεχίζει να αποτελεί η εκμετάλλευση αυτών των πρωτεϊνών ως στόχων ανάπτυξης καινοτομικών θεραπευτικών που θα αναστέλλουν την κυτταρική συγκόλληση, κυτταροκίνηση και μετάσταση στα νεοπλάσματα.

Cancer chemotherapy has been mainly based for the past 40 years on the use of cytotoxic drugs, unfortunately with rather limited success. The need for more specific cancer tar­gets, therapies less toxic to host tissues, superior drug-delivery systems and for approaches which might bypass acqired drug resistance are desper­ately needed. The recent developments in Mo­lecular Biology of cancer which has broaden our knowledge on how tumor cells induce angiogene­sis, how tumor cells invade and metastasize, how oncogenes and tumor suppressor genes regulate tumor cell growth, how tumor and normal cells regulate programmed cell death (apoptosis), taken together with the more sophisticated drug delivery systems available and the advances made in im­munotherapy, provide hope for a new era of can­cer therapeutics for the next years. This review will be focused on the role of cell adhesion mole­cules in tumor growth, invasion and metastasis as a new era in Pharmacology of cancer therapeu­tics. Cell adhesion molecules (integrins, cadher­ins, selectins, Immunoglobulin Supergene Family CAMs) play a critical role in morphogenesis, tis­sue organization and architecture, as well as in events like tissue remodeling, angiogenesis and leukocyte trafficking during would repair. It is well established that abnormal cell adhesion (tissue disorganization) is a hallmark of epithelial malig­nacies. In addition some cancer cells aquire the ability to migrate or to metastasize and that event seems to be analogous in many aspects to movement of leukocytes across the endothelium in response to an inflammatory cue, with the cru­cial involvement of cell adhesion molecules in this process. Finally, cell adhesion molecules regulate cell survival, apoptosis, differentiation and prolif­eration, so it is apparent that these molecules might relate to the malignant process.

Αναφορές – References
1. Kerbel R.S.: New targets, drugs, and approaches for the treatment of cancer: An overview. Cancer and Metastasis Rev. 17: 145-147 (1998)

2. Glinsky G.V.: Anti-adhesion cancer therapy. Cancer and Metastasis Rev. 17: 177-185 (1998)

3. Dimitroff C.J., Sharma A., Bernacki R.J. (1998). Cancer metastasis: A search for therapeutic inhibition. Cancer In­vest. 16: 279-290 (1998)

4. Tsiftsoglou A.S., Sartorelli A.C., Housman D.E., Dexter T.M. (Eds): In: Regulation of Cell Growth, Differentiation and Genetics in Cancer, vol. H 99, Springer-Verlag, Berlin, 1996

5. Ruoslahti E.: RGD and other recognition sequences for integrins. Ann. Rev. Cell Devel. Biol. 12: 697-715 (1996)

6. Chothia C., Jones E.Y.: The molecular structure of cell adhesion molecules. Annu. Rev. Biochem. 66: 823-862 (1997)

7. Hughes P.E., Pfaff M.: Integrin affinity modulation. Trends Cell Biol. 8: 359-364 (1998)

8. Sanders R.J., Mainiero F., Giancotti, F.G.: The role of integrins in tumorigenesis and metastasis. Cancer Invest. 16: 329-344 (1998)

9. Fernandez C., Clark K., Burrows L., Schofield N.R., Humphries, M.J.: Regulation of the extracellular ligand bind­ing activity of integrins. Frontiers Biosci. 3: 684-700 (1998)

10. Giancotti F.G., Mainiero F.: Integrin-mediated adhesion and signaling in tumorigenesis. Biophys. Biochim. Acta Rev. Cancer 1198: 47-64 (1994)

11. Ruoslahti E., Reed, J.C.: Anchorage dependence, inte­grins and apoptosis. Cell 77: 477-478 (1994)

12. Burridge K., Chrzanowska-Wodnicka M.: Focal adhe­sions, contractility, and signaling. Annu. Rev. Cell Devel. Biol. 12: 463-519 (1996)

13. Silverstein J.J., Silverstein R.L.: Cell adhesion molecules: an overview. Cancer Invest. 16: 176-182 (1998)

14. Aplin A.E., Howe A., Alahari S.K., Juliano R.L.: Signal transduction and signal modulation by cell adhesion recep­tors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol. Rev. 50: 197-263 (1998)

15. Schlaepfer D.D., Hunter T.: Integrin signaling and tyro­sine phosphorylation: just the FAKs? Trends Cell Biol. 8: 151-157 (1998)

16. Howe A., Aplin A.E., Alahari S.K., Juliano R.L.: Integrin signaling and cell growth control. Curr. Opin. Cell Biol. 10: 220-231 (1998)

17. Keely P., Parise L., Juliano R.: Integrins and GTPase in tumour growth, motility and invasion. Trends cell Biol, 8: 101-106 (1998)

18. Takeichi M.: Morphogenetic roles of classic cadherins. Curr. Opin. Cell Biol. 7: 619-627 (1995)

19. Yap A.S., Brieher W.M., Gumbiner B.M.: Molecular and functional analysis of cadherin-based adherens junctions. Annu. Rev. Cell Dev. Biol. 13: 119-146 (1997)

20. Gumbiner B.M.: Cell adhesion: The molecular basis of tissue architecture and morphogenesis. Cell 84: 345-357 (1996)

21. Bullions L.C., Levine A.J.: The role of beta-catenin in cell adhesion, signal transduction and cancer. Curr. Opin. Oncol. 10: 81-87 (1998)

22. Yap A.S.: The morphogenetic role of cadherin cell ad­hesion molecules in human cancer: a thematic review. Can­cer Invest. 16: 252-261 (1998)

23. Peifer M., McCrea P.D., Green K.J., Wieschaus E., Gumbiner B.M.: The vertebrate adhesive junction proteins β-catenin and plakoglobin and the Drosophila segment polarity gene armadillo form a multigene family with similar proper­ties. J. Cell Biol. 118: 681-691 (1992)

24. Klingensmith J., Nusse R.: Signaling by wingless in Dro­sophila. Dev. Biol. 166: 396-414 (1994)

25. Bhanot P., Brink M., Samos C.H., Hsieh J.-C., Wang Y., Macke J.P., Andrew D., Nathans J., Nusse R.: A new member of the frizzled family from Drosophila functions as a wingless receptor. Nature 382: 225-230 (1996)

26. Yanagawa S., van Leeuwen F., Wodarz A., Klingens­mith J., Nusse R.: The Dishevelled protein is modified by wingless signaling in Drosophila. Genes Dev. 9: 1087-1097 (1995)

27. Polakis P.: The adenomatous polyposis coli (APC) tumor suppressor. Biophys. Biochim. Acta 1332: F127-F147 (1997)

28. Behrens J., von Kries J.P., Kuhn M., Bruhn L., Wedlich D., Grosschedl R., Birchmeier W.: Functional interaction of β-catenin with the transcriptional factor LEF-1. Nature 382: 638-642 (1996)

29. Huber O., Korn R., McLaughlin J., Ohsugi M., Herrmann B.G., Kemler R.: Nuclear localization of β-catenin by inter­action with transcription factor LEF-1. Mech. Dev, 59: 3-10 (1996)

30. Molenaar M., van de Wetering M., Oosterwegel M., Pe­terson-Maduro J., Godsave S., Korinek V., Roose J., De­stree O., Clevers H.: XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86: 391-399 (1996)

31. Batsché E., Muchardt C., Behrens J., Hurst H.C., Cre­misi: Rb and c-myc activate expression of the E-cadherin gene in epithelial cells through interaction with transcription factor AP-2. Mol. Cell. Biol. 18: 3647-3658 (1998)

32. He T-C., Sparks A.B., Rago C., Hormeking H., Zawel L., daCosta L.T., Morin P.J., Vogelstein B., Kinzler K.W.: Identification of c-myc as a target of the APC pathway. Sci­ence 281: 1509-1512 (1998)

33. Assoian R.K.: Anchorage-dependent cell cycle progres­sion. J. Cell Biol. 136: 1-4 (1997)

34. Schwartz M.A.: Integrins, oncogenes and anchorage independence. J. Cell Biol. 139: 575-578 (1997)

35. Frisch S.M., Ruoslahti, E.: Integrins and anoikis. Curr. Opin. Cell Biol. 9: 701-706 (1997)

36. Porter A.G., Ng P., Janicke, R.V.: Death substrates come alive. Bioessays 19: 501-507 (1997)

37. White E.: Life, death, and the pursuit of apoptosis. Genes Dev. 10: 1-15 (1996)

38. Franke T.F., Kaplan D.R., Cantley, L.C.: PI3K: down­stream AKTion blocks apoptosis. Cell 88: 435-437 (1997)

39. Folkman J., Klagsbrun M.: Angiogenic factors. Science 235: 442-447 (1997)

40. Ziober B.L., Lin C.-S., Kramer, R.H.: Laminin-binding integrins in tumor progression and metastasis. Sem. Cancer Biol. 7: 119-128 (1996)

41. Brooks P.C., Clark R.A.F., Cheresh D.A.: Requirement for vascular integrin αvβ3for angiogenesis. Science 264: 569-571 (1994)

42. Gardner M.J., Jones L.M., Catterall J.B., et.al.: Expres­sion of cell adhesion molecules on ovarian cancer metasta­sis. Cancer Lett. 91: 229-234 (1995)

43. Takeichi M: Cadherins in cancer: Implications for inva­sion and metastasis. Curr. Opin. Cell Biol. 5: 806-811 (1993)

44. Birchmeir W., Behrens J.: Cadherin expression in carci­nomas: role in the formation of cell junctions and the pre­vention of invasiveness. Biochim. Biophys. Acta 1198: 11-26 (1994)

45. Shiozaki H., Oka H., Masatoshi I., Tamura S., Monden M.: E-cadherin mediated adhesion system in cancer cells. Cancer 77: 1605-1613 (1996)

46. Hirohashi S.: Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Amer. J. Pathol. 153: 333-339 (1998)

47. Gumbiner B.: Signal transduction by β-catenin. Curr. Opin. Cell Biol. 7: 634-640 (1995)

48. Barth A.I.M., Näthke I.S., Nelson W.J.: Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Curr. Opin. Cell Biol. 9: 683-690 (1997)

49. Kantak S.S., Kramer R.H.: E-cadherin regulates anchor­age-independent growth and survival in oral squamous cell carcinoma cells. J. Biol. Chem. 273: 16953-16961 (1998)

50. Croix B.S., Sheehan C., Rak J.W., FlØrenes V.A., Slin­gerland J.M., Kerbel R.S.: E-cadherin-dependent growth suppression is mediated by the cyclin-dependent kinase in­hibitor p27KIP1. J. Cell Biol. 142: 557-571 (1998)

51. Vizirianakis I.S., Chen Y.-Q., Kramer R.H.: Transfection of epithelial cells with E-cadherin dominant-negative con­struct disrupts cell-cell adhesion. Mol. Biol. Cell 9: 49a (1998)

52. Lohse M.J.: The future of Pharmacology. Trends Phar­macol. Sci. 19: 198-200 (1998)

53. Gray N.S., Wodicka L., Thunnissen A.-M.W.H., Norman T.C., Kwon S., Espinoza H., Morgan D.O., Barnes G., Le­clerc S., Meijer L., Kim S.-H., Lockhart D.J., Schultz P.G.: Exploiting chemical libraries, structure, and genomics in the search of kinase inhibitors. Science 281: 533-538 (1998)

54. Kleyn P.W., Vesell E.S.: Genetic variation as a guide to drug development. Science 281: 1820-1821 (1998)

55. Augustin H.G.: Antiangiogenic tumour therapy: will it work? Trends Pharmacol. Sci. 19: 216-222 (1998)

56. Taniguchi T., Rigg A., Lemoine N.R.: Targeting angi­ogenesis: genetic intervention which strikes at the weak link of tumorigenesis. Gene Therapy 5: 1011-1013 (1998)

57. Parmiani G.: Immunological approach to gene therapy of human cancer: improvements through the understanding of mechanism(s). Gene Therapy 5: 863-864 (1998)

58. Miller A.D.: Cationic liposomes for gene therapy. Angew. Chem. (Intern. Ed.) 37: 1768-1785 (1998)

59. Jain K.K.: Strategies and technologies for drug delivery systems. Trends Pharmacol. Sci. 19: 155-157 (1998)

60. Mayer L.D.: Future developments in the selectivity of anticancer agents: Drug delivery and molecular target strategies. Cancer Metastasis Rev. 17: 211-218 (1998)

61. Pettit D.K., Gombotz W.R.: The development of site-specific drug-delivery systems for protein and peptide bio­pharmaceuticals. TIBTECH 16: 343-349 (1998)

62. Mauceri H., Hann N.N., Beckett M.A., Gorski D.H., Staba M-J., Stellato K.A., Bigelow K., Heimann R., Gately S., Dhanabal M., Soff G.A., Sukhatme V.P., Kufe D., Weichselbaum R.R.: Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature 394: 287-291 (1998)

63. Mareel M., Berx G., Roy F.V., Bracke M.: Cadher­in/catenin complex: a target for antiinvasive therapy? J. Cell. Biochem. 61: 524-530 (1996)

64. Lutz K.L., Jois S.D.S., Siahaan T.J.: Secondary struc­ture of the HAV peptide which regulates cadherin-catenin interaction. J. Biomol. Struct. Dynam. 13: 447-455 (1995)

65. Sharma V.A., Logan J., King D.S., White, R., Alber T.: Sequence-based design of a peptide probe for the APC tu­mor suppressor protein. Curr. Biol. 8: 823-830 (1998)

66. Schwartz M.A.: Integrins, Oncogenes, and Anchorage Independence. J. Cell Biol. 139: 575-578 (1997)

Online ISSN 1011-6575

Άρθρα Δημοσιευμένα σε αυτό το Περιοδικό Καταχωρούνται στα:
Chemical Abstracts

Elsevier’s Bibliographic Databases: Scopus, EMBASE, EMBiology, Elsevier BIOBASE
SCImago Journal and Country Rank Factor

Articles published in this Journal are Indexed or Abstracted in:
• Chemical Abstracts
• Elsevier’s Bibliographic Databases: Scopus, EMBASE, EMBiology, Elsevier BIOBASE
SCImago Journal and Country Rank Factor

Άρθρα Δημοσιευμένα στην Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Ελληνική Έκδοση
Articles Published in Epitheorese Klinikes Farmakologias και Farmakokinetikes-Greek Edition

Συντακτικη Επιτροπή-Editorial Board

ΕΤΗΣΙΑ ΣΥΝΔΡΟΜΗ – ANNUAL SUBSCRIPTION
Γλώσσα Πλήρους Κειμένου –
Full Text Language
Ελληνικά – Greek
Παραγγελία – Αγορά –
Order – Buy
Ηλεκτρονική Μορφή: pdf (70 €) –
Digital Type: pdf (70 €)
pharmakonpress[at]pharmakonpress[.]gr
Έντυπη Μορφή (70 € + έξοδα αποστολής)
Printed Type (70 € + shipping)
pharmakonpress[at]pharmakonpress[.]gr

 

Προσθέστε στους σελιδοδείκτες το μόνιμο σύνδεσμο.

Τα σχόλια είναι απενεργοποιημένα.