Τίτλος – Title
|
Οι Πρωτεΐνες Συγκόλλησης Ιντεγκρίνες και Κατχερίνες ως Στόχος για την Ανάπτυξη Νέων Αντινεοπλασματικών Χημειοθεραπευτικών Cell Adhesion as A Target for the Development of New Anticancer Therapeutics |
|
Συγγραφέας – Author
|
Ιωάννης Σ. Βιζιριανάκης1,2, Αστέριος Σ. Τσιφτσόγλου1 , Randall H. Kramer2 1 Εργαστήριο Φαρμακολογίας, Τμήμα Φαρμακευτικής, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, 540 06 Θεσσαλονίκη, και 2 Tumor Biology Laboratory, Departments of Stomatology and Anatomy, University of California, San Francisco, CA 94143-0512 Ioannis S. Vizirianakis1,2, Asterios S. Tsiftsoglou2, Randall H. Kramer1 1 Tumor Biology Laboratory, Departments of Stomatology and Anatomy, UCSF, HSW 604-0512, San Francisco, CA 94143-0512, USA 2 Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki 540 06, Greece |
|
Παραπομπή – Citation
|
Βιζιριανάκης,Ι.Σ., Τσιφτσόγλου,Α.Σ., Kramer,R.Η. : Οι Πρωτεΐνες Συγκόλλησης Ιντεγκρίνες και Κατχερίνες ως Στόχος για την Ανάπτυξη Νέων Αντινεοπλασματικών Χημειοθεραπευτικών , Επιθεώρηση Κλιν. Φαρμακολ. Φαρμακοκινητ. 16 : 149-160 (1998) Vizirianakis,I.S., Tsiftsoglou,A.S., Kramer,R.Η. : Cell Adhesion as A Target for the Development of New Anticancer Therapeutics, Epitheorese Klin. Farmakol. Farmakokinet. 16: 149-160 (1998) |
|
Ημερομηνία Δημοσιευσης – Publication Date
|
20-12-1998
|
|
Γλώσσα Πλήρους Κειμένου –
Full Text Language |
Ελληνικά – Greek |
|
Παραγγελία – Αγορά –
Order – Buy |
Ηλεκτρονική Μορφή: pdf (15 €) –
Digital Type: pdf (15 €) pharmakonpress[at]pharmakonpress[.]gr |
|
Λέξεις κλειδιά – Keywords
|
Κυτταρική συγκόλληση, ιντεγκρίνες, κατχερίνες, αντινεοπλασματικά φάρμακα Cell adhesion, integrins, cadherins, anticancer therapeutics
|
|
Λοιποί Όροι – Other Terms
|
Άρθρο Article |
|
Περίληψη – Summary
|
Δυστυχώς ακόμη και σήμερα η χημειοθεραπευτική αντιμετώπιση του καρκίνου συνεχίζει να βασίζεται κυρίως σε κυτταροτοξικά φάρμακα (αντιμεταβολίτες, αντιβιοτικά, αντιμιτωτικά, αναστολείς ενζύμων, κ.λπ.) που αναστέλλουν την ανάπτυξη και τη διασπορά των όγκων (μετάσταση) με περιορισμένη βέβαια επιτυχία. Έτσι, η ανάγκη για νέα φάρμακα με περισσότερο εξειδικευμένο μηχανισμό δράσης ή παρέμβασης στην ανάπτυξη των όγκων και ιδιαίτερα στην μετάσταση είναι σήμερα πλέον επιτακτική. Οι πρόσφατες ανακαλύψεις που έγιναν στη βασική κυτταρική και μοριακή βιολογία του καρκινικού κυττάρου διευρύνουν τους ορίζοντες και έτσι νέοι στόχοι-κυτταρικές διεργασίες ανεκαλύφθησαν και προσετέθησαν στο σχεδιασμό ανάπτυξης νέων χημειοθεραπευτικών αντινεοπλασματικών φαρμάκων. Ειδικότερα, διεργασίες όπως η αγγειογένεση, η απόπτωση, η διαφοροποίηση, η ρύθμιση ογκογονιδίων και ογκοκατασταλτικών γονιδίων, η συγκόλληση και η μετανάστευση των κυττάρων αποτελούν ενδιαφέροντες στόχους δράσης για αυτά τα νέα φάρμακα. Το παρόν άρθρο επικεντρώνεται επιλεκτικά στο βιολογικό ρόλο των ιντεγκρινών και των κατχερινών που αποτελούν δύο ομάδες σημαντικών πρωτεϊνών συγκόλλησης των κυττάρων και συμβάλλουν καθοριστικά στη συμπεριφορά του καρκινικού κυττάρου. Κεντρικό θέμα του άρθρου συνεχίζει να αποτελεί η εκμετάλλευση αυτών των πρωτεϊνών ως στόχων ανάπτυξης καινοτομικών θεραπευτικών που θα αναστέλλουν την κυτταρική συγκόλληση, κυτταροκίνηση και μετάσταση στα νεοπλάσματα. Cancer chemotherapy has been mainly based for the past 40 years on the use of cytotoxic drugs, unfortunately with rather limited success. The need for more specific cancer targets, therapies less toxic to host tissues, superior drug-delivery systems and for approaches which might bypass acqired drug resistance are desperately needed. The recent developments in Molecular Biology of cancer which has broaden our knowledge on how tumor cells induce angiogenesis, how tumor cells invade and metastasize, how oncogenes and tumor suppressor genes regulate tumor cell growth, how tumor and normal cells regulate programmed cell death (apoptosis), taken together with the more sophisticated drug delivery systems available and the advances made in immunotherapy, provide hope for a new era of cancer therapeutics for the next years. This review will be focused on the role of cell adhesion molecules in tumor growth, invasion and metastasis as a new era in Pharmacology of cancer therapeutics. Cell adhesion molecules (integrins, cadherins, selectins, Immunoglobulin Supergene Family CAMs) play a critical role in morphogenesis, tissue organization and architecture, as well as in events like tissue remodeling, angiogenesis and leukocyte trafficking during would repair. It is well established that abnormal cell adhesion (tissue disorganization) is a hallmark of epithelial malignacies. In addition some cancer cells aquire the ability to migrate or to metastasize and that event seems to be analogous in many aspects to movement of leukocytes across the endothelium in response to an inflammatory cue, with the crucial involvement of cell adhesion molecules in this process. Finally, cell adhesion molecules regulate cell survival, apoptosis, differentiation and proliferation, so it is apparent that these molecules might relate to the malignant process. |
|
Αναφορές – References
|
1. Kerbel R.S.: New targets, drugs, and approaches for the treatment of cancer: An overview. Cancer and Metastasis Rev. 17: 145-147 (1998)
2. Glinsky G.V.: Anti-adhesion cancer therapy. Cancer and Metastasis Rev. 17: 177-185 (1998) 3. Dimitroff C.J., Sharma A., Bernacki R.J. (1998). Cancer metastasis: A search for therapeutic inhibition. Cancer Invest. 16: 279-290 (1998) 4. Tsiftsoglou A.S., Sartorelli A.C., Housman D.E., Dexter T.M. (Eds): In: Regulation of Cell Growth, Differentiation and Genetics in Cancer, vol. H 99, Springer-Verlag, Berlin, 1996 5. Ruoslahti E.: RGD and other recognition sequences for integrins. Ann. Rev. Cell Devel. Biol. 12: 697-715 (1996) 6. Chothia C., Jones E.Y.: The molecular structure of cell adhesion molecules. Annu. Rev. Biochem. 66: 823-862 (1997) 7. Hughes P.E., Pfaff M.: Integrin affinity modulation. Trends Cell Biol. 8: 359-364 (1998) 8. Sanders R.J., Mainiero F., Giancotti, F.G.: The role of integrins in tumorigenesis and metastasis. Cancer Invest. 16: 329-344 (1998) 9. Fernandez C., Clark K., Burrows L., Schofield N.R., Humphries, M.J.: Regulation of the extracellular ligand binding activity of integrins. Frontiers Biosci. 3: 684-700 (1998) 10. Giancotti F.G., Mainiero F.: Integrin-mediated adhesion and signaling in tumorigenesis. Biophys. Biochim. Acta Rev. Cancer 1198: 47-64 (1994) 11. Ruoslahti E., Reed, J.C.: Anchorage dependence, integrins and apoptosis. Cell 77: 477-478 (1994) 12. Burridge K., Chrzanowska-Wodnicka M.: Focal adhesions, contractility, and signaling. Annu. Rev. Cell Devel. Biol. 12: 463-519 (1996) 13. Silverstein J.J., Silverstein R.L.: Cell adhesion molecules: an overview. Cancer Invest. 16: 176-182 (1998) 14. Aplin A.E., Howe A., Alahari S.K., Juliano R.L.: Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol. Rev. 50: 197-263 (1998) 15. Schlaepfer D.D., Hunter T.: Integrin signaling and tyrosine phosphorylation: just the FAKs? Trends Cell Biol. 8: 151-157 (1998) 16. Howe A., Aplin A.E., Alahari S.K., Juliano R.L.: Integrin signaling and cell growth control. Curr. Opin. Cell Biol. 10: 220-231 (1998) 17. Keely P., Parise L., Juliano R.: Integrins and GTPase in tumour growth, motility and invasion. Trends cell Biol, 8: 101-106 (1998) 18. Takeichi M.: Morphogenetic roles of classic cadherins. Curr. Opin. Cell Biol. 7: 619-627 (1995) 19. Yap A.S., Brieher W.M., Gumbiner B.M.: Molecular and functional analysis of cadherin-based adherens junctions. Annu. Rev. Cell Dev. Biol. 13: 119-146 (1997) 20. Gumbiner B.M.: Cell adhesion: The molecular basis of tissue architecture and morphogenesis. Cell 84: 345-357 (1996) 21. Bullions L.C., Levine A.J.: The role of beta-catenin in cell adhesion, signal transduction and cancer. Curr. Opin. Oncol. 10: 81-87 (1998) 22. Yap A.S.: The morphogenetic role of cadherin cell adhesion molecules in human cancer: a thematic review. Cancer Invest. 16: 252-261 (1998) 23. Peifer M., McCrea P.D., Green K.J., Wieschaus E., Gumbiner B.M.: The vertebrate adhesive junction proteins β-catenin and plakoglobin and the Drosophila segment polarity gene armadillo form a multigene family with similar properties. J. Cell Biol. 118: 681-691 (1992) 24. Klingensmith J., Nusse R.: Signaling by wingless in Drosophila. Dev. Biol. 166: 396-414 (1994) 25. Bhanot P., Brink M., Samos C.H., Hsieh J.-C., Wang Y., Macke J.P., Andrew D., Nathans J., Nusse R.: A new member of the frizzled family from Drosophila functions as a wingless receptor. Nature 382: 225-230 (1996) 26. Yanagawa S., van Leeuwen F., Wodarz A., Klingensmith J., Nusse R.: The Dishevelled protein is modified by wingless signaling in Drosophila. Genes Dev. 9: 1087-1097 (1995) 27. Polakis P.: The adenomatous polyposis coli (APC) tumor suppressor. Biophys. Biochim. Acta 1332: F127-F147 (1997) 28. Behrens J., von Kries J.P., Kuhn M., Bruhn L., Wedlich D., Grosschedl R., Birchmeier W.: Functional interaction of β-catenin with the transcriptional factor LEF-1. Nature 382: 638-642 (1996) 29. Huber O., Korn R., McLaughlin J., Ohsugi M., Herrmann B.G., Kemler R.: Nuclear localization of β-catenin by interaction with transcription factor LEF-1. Mech. Dev, 59: 3-10 (1996) 30. Molenaar M., van de Wetering M., Oosterwegel M., Peterson-Maduro J., Godsave S., Korinek V., Roose J., Destree O., Clevers H.: XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86: 391-399 (1996) 31. Batsché E., Muchardt C., Behrens J., Hurst H.C., Cremisi: Rb and c-myc activate expression of the E-cadherin gene in epithelial cells through interaction with transcription factor AP-2. Mol. Cell. Biol. 18: 3647-3658 (1998) 32. He T-C., Sparks A.B., Rago C., Hormeking H., Zawel L., daCosta L.T., Morin P.J., Vogelstein B., Kinzler K.W.: Identification of c-myc as a target of the APC pathway. Science 281: 1509-1512 (1998) 33. Assoian R.K.: Anchorage-dependent cell cycle progression. J. Cell Biol. 136: 1-4 (1997) 34. Schwartz M.A.: Integrins, oncogenes and anchorage independence. J. Cell Biol. 139: 575-578 (1997) 35. Frisch S.M., Ruoslahti, E.: Integrins and anoikis. Curr. Opin. Cell Biol. 9: 701-706 (1997) 36. Porter A.G., Ng P., Janicke, R.V.: Death substrates come alive. Bioessays 19: 501-507 (1997) 37. White E.: Life, death, and the pursuit of apoptosis. Genes Dev. 10: 1-15 (1996) 38. Franke T.F., Kaplan D.R., Cantley, L.C.: PI3K: downstream AKTion blocks apoptosis. Cell 88: 435-437 (1997) 39. Folkman J., Klagsbrun M.: Angiogenic factors. Science 235: 442-447 (1997) 40. Ziober B.L., Lin C.-S., Kramer, R.H.: Laminin-binding integrins in tumor progression and metastasis. Sem. Cancer Biol. 7: 119-128 (1996) 41. Brooks P.C., Clark R.A.F., Cheresh D.A.: Requirement for vascular integrin αvβ3for angiogenesis. Science 264: 569-571 (1994) 42. Gardner M.J., Jones L.M., Catterall J.B., et.al.: Expression of cell adhesion molecules on ovarian cancer metastasis. Cancer Lett. 91: 229-234 (1995) 43. Takeichi M: Cadherins in cancer: Implications for invasion and metastasis. Curr. Opin. Cell Biol. 5: 806-811 (1993) 44. Birchmeir W., Behrens J.: Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim. Biophys. Acta 1198: 11-26 (1994) 45. Shiozaki H., Oka H., Masatoshi I., Tamura S., Monden M.: E-cadherin mediated adhesion system in cancer cells. Cancer 77: 1605-1613 (1996) 46. Hirohashi S.: Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Amer. J. Pathol. 153: 333-339 (1998) 47. Gumbiner B.: Signal transduction by β-catenin. Curr. Opin. Cell Biol. 7: 634-640 (1995) 48. Barth A.I.M., Näthke I.S., Nelson W.J.: Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Curr. Opin. Cell Biol. 9: 683-690 (1997) 49. Kantak S.S., Kramer R.H.: E-cadherin regulates anchorage-independent growth and survival in oral squamous cell carcinoma cells. J. Biol. Chem. 273: 16953-16961 (1998) 50. Croix B.S., Sheehan C., Rak J.W., FlØrenes V.A., Slingerland J.M., Kerbel R.S.: E-cadherin-dependent growth suppression is mediated by the cyclin-dependent kinase inhibitor p27KIP1. J. Cell Biol. 142: 557-571 (1998) 51. Vizirianakis I.S., Chen Y.-Q., Kramer R.H.: Transfection of epithelial cells with E-cadherin dominant-negative construct disrupts cell-cell adhesion. Mol. Biol. Cell 9: 49a (1998) 52. Lohse M.J.: The future of Pharmacology. Trends Pharmacol. Sci. 19: 198-200 (1998) 53. Gray N.S., Wodicka L., Thunnissen A.-M.W.H., Norman T.C., Kwon S., Espinoza H., Morgan D.O., Barnes G., Leclerc S., Meijer L., Kim S.-H., Lockhart D.J., Schultz P.G.: Exploiting chemical libraries, structure, and genomics in the search of kinase inhibitors. Science 281: 533-538 (1998) 54. Kleyn P.W., Vesell E.S.: Genetic variation as a guide to drug development. Science 281: 1820-1821 (1998) 55. Augustin H.G.: Antiangiogenic tumour therapy: will it work? Trends Pharmacol. Sci. 19: 216-222 (1998) 56. Taniguchi T., Rigg A., Lemoine N.R.: Targeting angiogenesis: genetic intervention which strikes at the weak link of tumorigenesis. Gene Therapy 5: 1011-1013 (1998) 57. Parmiani G.: Immunological approach to gene therapy of human cancer: improvements through the understanding of mechanism(s). Gene Therapy 5: 863-864 (1998) 58. Miller A.D.: Cationic liposomes for gene therapy. Angew. Chem. (Intern. Ed.) 37: 1768-1785 (1998) 59. Jain K.K.: Strategies and technologies for drug delivery systems. Trends Pharmacol. Sci. 19: 155-157 (1998) 60. Mayer L.D.: Future developments in the selectivity of anticancer agents: Drug delivery and molecular target strategies. Cancer Metastasis Rev. 17: 211-218 (1998) 61. Pettit D.K., Gombotz W.R.: The development of site-specific drug-delivery systems for protein and peptide biopharmaceuticals. TIBTECH 16: 343-349 (1998) 62. Mauceri H., Hann N.N., Beckett M.A., Gorski D.H., Staba M-J., Stellato K.A., Bigelow K., Heimann R., Gately S., Dhanabal M., Soff G.A., Sukhatme V.P., Kufe D., Weichselbaum R.R.: Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature 394: 287-291 (1998) 63. Mareel M., Berx G., Roy F.V., Bracke M.: Cadherin/catenin complex: a target for antiinvasive therapy? J. Cell. Biochem. 61: 524-530 (1996) 64. Lutz K.L., Jois S.D.S., Siahaan T.J.: Secondary structure of the HAV peptide which regulates cadherin-catenin interaction. J. Biomol. Struct. Dynam. 13: 447-455 (1995) 65. Sharma V.A., Logan J., King D.S., White, R., Alber T.: Sequence-based design of a peptide probe for the APC tumor suppressor protein. Curr. Biol. 8: 823-830 (1998) 66. Schwartz M.A.: Integrins, Oncogenes, and Anchorage Independence. J. Cell Biol. 139: 575-578 (1997) |
Online ISSN 1011-6575
• Elsevier’s Bibliographic Databases: Scopus, EMBASE, EMBiology, Elsevier BIOBASE
SCImago Journal and Country Rank Factor
Articles published in this Journal are Indexed or Abstracted in:
• Chemical Abstracts
• Elsevier’s Bibliographic Databases: Scopus, EMBASE, EMBiology, Elsevier BIOBASE
SCImago Journal and Country Rank Factor
Τι είναι η Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Ελληνική Έκδοση-Οδηγίες προς τους Συγγραφείς
What is Epitheorese Klinikes Farmakologias και Farmakokinetikes-Greek Edition-Instrunctions to Authors
Άρθρα Δημοσιευμένα στην Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Ελληνική Έκδοση
Articles Published in Epitheorese Klinikes Farmakologias και Farmakokinetikes-Greek Edition
Συντακτικη Επιτροπή-Editorial Board
ΕΤΗΣΙΑ ΣΥΝΔΡΟΜΗ – ANNUAL SUBSCRIPTION
|
||
Γλώσσα Πλήρους Κειμένου –
Full Text Language |
Ελληνικά – Greek
|
|
Παραγγελία – Αγορά –
Order – Buy |
Ηλεκτρονική Μορφή: pdf (70 €) –
Digital Type: pdf (70 €) pharmakonpress[at]pharmakonpress[.]gr
|
|
Έντυπη Μορφή (70 € + έξοδα αποστολής)
Printed Type (70 € + shipping) pharmakonpress[at]pharmakonpress[.]gr
|