Τόμος 8 (1994) – Τεύχος 1 – Άρθρο 1 – Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Διεθνής Έκδοση – Volume 8 (1994) – Issue 1 – Article 1 – Epitheorese Klinikes Farmakologias και Farmakokinetikes-International Edition

Title Structure, function and immunogenicity of the muscle-type nicotinic acetylcholine receptor
Authors Avgi Mamalaki and Socrates J. Tzartos

Department of Biochemistry, Hellenic Pasteur Institute

Citation Mamalaki, A., Tzartos, S.J.: Structure, function and immunogenicity of the muscle-type nicotinic acetylcholine receptor, Epitheorese Klin. Farmakol. Farmakokinet. 8(1): 7-20 (1994)
Publication Date Accepted for publication: 5 December 1993
Full Text Language English
Order – Buy  Ηλεκτρονική Μορφή: pdf (10 €) – Digital Type: pdf (10 €) 

pharmakonpress[at]pharmakonpress[.]gr

Keywords Acetylcholine receptor, monoclonal antibodies, myasthenia gravis, main immunogenic region.
Other Terms review article
Summary The muscle-type acetylcholine receptor (AChR) is an integral glycoprotein of the postsynaptic membrane, composed of four types of subunits with the stoichiometry a2βγδ or a2βεδ. AChR plays an important role in the cholinergic synaptic transmission. Understanding the structure and the function of the AChR in depth is of great importance as this molecule is the autoantigen in the autoimmune disease myasthenia gravis. The majority of the monoclonal antibodies derived from rats immunized with intact AChR are directed against an extracellular part of the α-subunit, named the ma immunogenic region (MIR). The MIR, located in residues 67-76 of the receptor a-subunit, seems to be the major pathogenic region of the AChR, as this molecule in cell cultures is efficiently protected by anti-MIR Fab or recombinant single chain Fv fragments against antigenic modulation induced by human myasthenic sera.
References 1           Barnard, E.A., Darlison, M.G., and Seeburg, P.: Molecular biology of the GABA-A receptor: the receptor/channel superfamily. Trends. Neurosci. 10: 502 (1987)

2           Stroud, R.M., McCarthy, M.P. and Shuster, M.: Nicotinic acetylcholine receptor superfamily of lig-and-gated ion channels. Biochemistry 29: 11009 (1990)

3           Lucas, R.J. and Bencherif, M.: Heterogeneity and regulation of nicotinic acetylcholine receptors. Int. Rev. Neurobiol. 34: 25 (1992)

4           Hucho, F., and Changeux, J.-P.: Molecular weight and quaternary structure of the cholinergic receptor extracted by detergents from Electrophorus electricus electric tissue. FEBS. Lett. 38: 11 (1973)

5           Popot, J.L. and Changeux, J.P.: Nicotinic receptor of acetylcholine: structure of an oligomeric integral membrane protein. Physiol. Rev. 66: 1162 (1984)

6           Reynolds, J. and Karlin, A.: Molecular weight in detergent solution of acetylcholine receptor from Torpedo californica. Biochemistry 17: 2035 (1978)

7           Numa, S.: Structure and function of ionic channels. Chemica Scripta 27B: 5 (1987)

8           Oosterhuis, H. J.G.H, (ed): Myasthenia Gravis. In: Clin. Neurol. Neurosurg. Monogr. (Churchill Livingstone. Edinburgh) 5: 1 (1984)

9           Lindstrom, J., Shelton, D., and Fugii, Y.: Myasthenia Gravis. Adv. Immunol. 42: 233 (1988)

10         Penn, A.S., Richman, D.P., Ruff, R.L. and Lennon, V.A.(eds): Myasthenia Gravis and Related Disorders: Experimental and Clinical Aspects, Ann. N, Y, Acad. Sci. vol. 681 (1992)

11         Vincent, A. and Wray, D. (editors): Neuromuscular Transmission: Basic and Applied Aspects. Pergamon Press, Oxford (1992)

12         Heuser, J.E., Reese, T.S., Dennis, M.J., Jan, L. and Evans, L.: Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J. Cell. Biol. 81: 275 (1979)

13         Kuffler, S.W. and Yoshikami, D.: The number of transmitter molecules in a quantum: an estimate from ionophoretic application of acetylcholine at the neuromuscular synapse. J. Physiol. 251: 465 (1975)

14         Del Castillo, J. and Katz, B.: Interaction at end-plate receptors between different choline derivatives. Proc. Roy. Soc. B 146: 369 (1975)

15         Changeux, J.P.: Functional architecture and dynamics of the nicotinic acetylcholine receptor: an allosteric ligand-gated ion channel. Fidia Research Foundation Neuroscience Award Lectures, vol.4, Raven, New York, pp.21-168 (1990)

16         Kao. P. and Karlin, A.: Acetylcholine receptor binding site contains a disulfide crosslink between adjacent half-cystinyl residues. J. Biol. Chem. 261: 8085 (1986)

17         Maelicke, A.: Structure and function of the nicotinic acetylcholine receptor, in Handb, Expl. Pharmacol. (Whittaker. V.P. ed.), Springer-Verlag, Berlin, Vol. 86, pp.267-313 (1988)

18         Neumann, D., Barchan, D., Safran, A., Gershoni, J.M., and Fuchs, S.: Mapping of the α-bungarotoxin binding site within the α-subunit of the acetylcholine receptor. Proc. Natl. Acad. Sci. USA 83. 3008 (1986)

19         Aronheim, A., Eshel, Y., Mosckovitz, R., and Gershoni, J.M.: Characterization of the binding of α-bungarotoxin to bacterially expressed cholinergic binding sites. J. Biol. Chem. 263: 9933 (1988)

20         Wilson, P.T., and Lentz, T.L.: Binding of α-bungarotoxin to synthetic peptides corresponding to residues 173-204 of the α-subunit of Torpedo, calf and human acetylcholine receptor and restoration of high-affinity binding by sodium dodecyl sulfate. Biochemistry 27: 6667 (1988)

21         Gotti, C., Frigerio, F., Bolognesi, M., Longhi, R., Racchetti, G., and Clementi, F.: Nicotinic acetylcholine receptor: a structural model for α-subunit peptide 188-201, the putative binding site for cholinergic agents. FEBS Lett. 228: 118 (1988)

22         Tzartos, S.J., and Remoundos, M.S.: Fine localization of the major α-bungarotoxin binding site to residues α189-195 of the Torpedo acetylcholine receptor. Residues 189, 190 and 195 are indispensable for binding. J. Biol. Chem. 265: 21462 (1990)

23         Griesmann, G.E., McCormick, D.J., Deaizpurua, H.J., and Lennon, V.A.: Alpha-bungarotoxin binds to human acetylcholine receptor alpha-subunit peptide-185-199 in solution and solid phase but not to peptide-125-147 and peptide-389-409. J. Neurochem. 54: 1541 (1990)

24         Oberthur, W., Muhn, P., Baumann, H., Lottspeich, F., Wittmann-Leibold, B., and Hucho, F.: The reaction site of a non-competitive antagonist in the delta-subunit of the nicotinic acetylcholine receptor. EMBO J. 5: 1815 (1986)

25         Giraudat, J., Dennis, M., Heidmann, T., Haumont, P.-Y., Lederer, F., and Changeux, J.-P.: Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: [3H]chlorpromazine labels homologous residues in the β and δ chains. Biochemistry 26: 2410 (1987)

26         Changeux, J.-P.: The acetylcholine receptor: An allosteric membrane protein. Harvey Lect. 75: 85 (1981)

27         Lena, C. and Changeux, J.P.: Allosteric modulations of the nicotinic acetylcholine receptor. TINS 16: 181 (1993)

28         Merlie, J.P., Sebbane, R., Tzartos, S.J., and Lindstrom, J.: Inhibition of glycosylation with tunicamycin blocks assembly of newly synthesized acetylcholine receptor subunits in muscle cells. J. Biol. Chem. 257: 2694 (1982)

29         Fujita, N., Nelson, N., Fox, T.D., Claudio, T., Lindstrom, J., Riezman, H., and Hess, G.P.: Biosynthesis of the Torpedo californica acetylcholine receptor ~ subunit in yeast). Science 23: 1284 (1986)

30         Mishina, M., Tobimatsu, T., Imoto, Κ., Tanaka, Κ., Fujita, Y., Fukuda, Κ., Kurasaki, M., Takahashi, H., Morimoto, Y., Hirose, T., Inayama, S., Takahashi, T., Kuno, M. and Numa, S.: Location of functional regions of acetylcholine receptor α-subunit by site directed mutagenesis. Nature 313: 364 (1985)

31         Blount, P., and Merlie, J.P.: Native folding of an acetylcholine receptor a subunit expressed in the absence of other receptor subunits. J. Biol Chem. 263: 1072 (1988)

32         Claudio, T., Green, W.N., Hartman, D.S., Hayden, D., Paulson, H.L., Sigworth, F.J., Sine, S.M. and Swedlund, A.: Genetic reconstitution of functional acetylcholine receptor channels in mouse fibroblasts. Science 238: 1688 (1987)

33         Anderson, D.J., Walter, P., and Blobel, G.: Signal recognition protein is required for the integration of Acetylcholine receptor δ subunit, a transmembrane glycoprotein, into the endoplasmic reticulum membranes. J. Cell Biol. 93: 501 (1982)

34         Merlie, J.P., and Lindstrom, J.: Assemply in vivo of mouse muscle acetylcholine receptor: Identification of an ~-subunit species that may be an assemply intermediate. Cell 34: 141 (1983)

35         Smith, M.M., Lindstrom, J. and Merlie, J.P.: Formation of the α-bungarotoxin binding site and assembly of the nicotinic acetylcholine subunits occur in the endiplasmic reticulum. J. Biol. Chem. 262: 4367 (1987)

36         Blount, P., and Merlie, J.P.: Mutational analysis of muscle acetylcholine receptor subunit assembly. J. Cell Biol. 111: 2613 (1990)

37         Blount, P., and Merlie, J.P.: BIP associates with newly synthesized subunits of the mouse muscle nicotinic receptor. J. Cell Biol. 113. 1125 (1991)

38         Forsayeth, J.R., Gu, Y., Hall, Z.W.: BiP forms stable complexes with unassembled subunits of the acetylcholine receptor in transfected COS cells and in C2 muscle cells. J. Cell Biol 117: 841-847 (1992)

39         Gu, Y., Black, R.A., Ring, G., and Hall, Z.W.: A C2 muscle cell variant defective in transport of the acetylcholine receptor to the cell surface. J. Biol. Chem. 264: 11952 (1989)

40         Blount, P., Smith, M.M., and Merlie, J.P.: Assembly intermediates of the mouse muscle nicotinic acetylcholine receptor in stably transfected fibroblasts. J. Cell. Biol. 111: 2601 (1990)

41         Blount, P., and Merlie, J.P.: Characterization of an adult muscle acetylcholine receptor subunit by expression in fibroblasts. J. Biol. Chem. 266: 14692 (1991)

42         Gu, Y., Forsayeth, J.R., Verral, S., Yu, X.M. and Hall, Z.W.: Assembly of the mammalian muscle acetylcholine receptor in transfected COS cells. J. Cell Biol. 114: 799 (1991)

43         Yu, X-M. and Hall, Z.W.: Extracellular domains mediating subunit interactions of muscle acetylcholine receptor. Nature 352: 64 (1991)

44         Verrall, S. and Hall, Z.W.: The N-terminal domains of acetylcholine receptor subunits contain recognition signals for the initial steps of receptor assembly. Cell 68: 23 (1992)

45         Green, W.N. and Claudio, T.: Acetylcholine receptor assembly: subunit folding and oligomerization occur sequentially. Cell 74: 57 (1993)

46         Sumikawa, K. and Miledi, R.: Assembly and N-glycosylation of all ACh receptor subunits are required for their efficient insertion into plasma membranes. Mol. Brain Res. 5: 183 (1989)

47         Gehle, V.M. and Sumikawa, Κ.: Site-directed mutagenesis of the conserved N-glycosylation site on the nicotinic acetylcholine receptor subunits. Mol. Brain Res. 11: 17 (1991)

48         Green, W.N., Ross, A.F., Claudio, T.: Acetylcholine receptor assembly is stimulated by phosphorylation of its subunit. Neuron 7: 659 (1991)

49         Wallace, B.G., Qu, Z.C., and Huganir, R.L.: Agrin induces phosphorylation of the nicotinic acetylcholine receptor. Neuron 6: 869 (1991)

50         Huganir, R.L., Delcour, A.H., Greengard, P., and Hess, G.P.: Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization. Nature 321: 774 (1986)

51         Huganir, R.L. and Greengard, P.: Regulation of neurotransmitter receptor desensitization by protein phosphorylation. Neuron 5: 555 (1990)

52         Ferrer-Montiel, A.V., Montal, M.S., Diaz-Munoz, M. and Montai, M.: Agonist-independent activation of acetylcholine receptor channels by protein kinase A phosphorylation. Proc. Natl. Acad. Sci. USA 88: 10213 (1991)

53         Tzartos S.J., Valkana, C., Kouvatsou, R. and Kokla, A.: The tyrosine phosphorylation site of the acetylcholine receptor β subunit is located in a highly immunogenic epitope implicated in channel function: antibody probes for β subunit phosphorylation and function. EMBOJ. 12: 5141 (1993)

54         Wagner, Κ., Edson, Κ., Heginbotham, L., Post, M., Huganir, R.L. and Czernik, A.J.: Determination of the tyrosine phosphorylation sites of the nicotinic acetylcholine receptor. J. Biol. Chem. 266: 23784 (1991)

55         Laufer, R., and Changeux, J.P.: Activity dependent regulation of gene expression in muscle and neuronal cells. Mol. Neurobiol 3: 1 (1989)

56         Froehner, S.C.: Regulation of ion channel distribution at synapses. Annu. Rev. Neurosci. 16: 347 (1993)

57         Falls, D.L., Harris, D.A., Johnson, F.A., Morgan, M.M., Corfas, G. and Fishbach. G.D.: Mr 42000 ARIA: a protein that may regulate the accumulation of acetylcholine receptors at developing chick neuromuscular junctions. Cold Spring Harbor Symp. Quant. Biol. LV: 397 (1990)

58         Witzemann, V., Brenner, H.R., and Sakmann, B.: Neural factors regulate achr subunit messenger RNAs at rat neuromuscular synapses. J. Cell Biol. 114: 125 (1991)

59         Simon, A.M., Hoppe, P. and Burden, S.J.: Spatial restriction of acetylcholine receptor gene expression to subsynaptic nuclei. Development 114: 545 (1992)

60         Fumagalli, G., Balbi, S., Cangiano, A. and Lomo, T.: Regulation of turnover and number of acetylcholine receptors at neuromuscular junctions. Neuron 4: 563 (1990)

61         Steinbach, J.H., Merlie, J., Heinemann, S. and Bloch, R.: Degradation of junctional and extrajunctional acetylcholine receptors by developing rat skeletal muscle. Proc. Natl. Acad. Sci. USA 76: 3547 (1979)

62         Mishina, M., Takai, T., Imoto, Κ., Takahashi, T., Numa, S., Methfessel, C. and Sakmann, B.: Molecular distinction between fetal and adult forms of muscle acetylcholine receptot. Nature 321: 406 (1986)

63         Sakmann, B., Witzemann, V. and Brenner, H.: Developmental changes in acetylcholine receptor channel structure and function as a model for synaptic plasticity. Fidia Research Foundation Neuroscience Award Lectures, Raven Press, NY, vol.6, pp.51 (1992)

64         Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T., and Numa, S.: Primary structure of α-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299: 793 (1982)

65         Noda, M.J., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Hirose, T., Asai, M., Takashima, H., Inayama, S., Miyata, T., and Numa, S.: Primary structures of β- and δ-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature 301: 251 (1983)

66         Claudio, T., Ballivet, M,, Patrick, J., and Heinemann, S.: Nucleotide and deduced amino acid sequences of Torpedo Californica acetylcholine receptor γ-subunit. Proc. Natl. Acad. Sci. USA 80: 1111 (1983)

67         Devillers-Thiery, A., Giraudat, J., Bentaboulet, M., and Changeux, J.P.: Complete mRNA coding sequence of the acetylcholine binding subunit from Torpedo marmorata acetylcholine receptor. Proc. Natl. Acad. Sci. USA 80: 206 (1983)

68         Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Tanabe, T., Shimizu, S., Kikyotani, S., Kayano, T., Hirose, T. Inayama, S., and Numa, A.: Cloning and sequence analysis of calf cDNA and human genomic DNA encoding a subunit precursor of muscle acetylcholine receptor. Nature 305: 818 (1983)

69         Nef, P., Mauron, A., Stalder, R., Alliod, C., and Ballivet, M.: Structure, linkage, and sequence of the two genes encoding the δ and γ subunits of the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 81: 7975 (1984)

70         LaPolla, R.J., Mayne, K.M., and Davidson, N.: Isolation and characterization of a cDNA clone for the complete protein coding region of the δ-subunit of the mouse acetylcholine receptor. Proc. Natl. Acad. Sci. USA 81: 7970 (1984)

71         Boulter, J., Evans, Κ., Goldman, D., Martin, G., Treco, D., Heinemann, S., and Patrick, J.: Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor α-subunit. Nature 319: 368 (1986)

72         Nef, P., Oneyser, C., Alliod, C., Couturier, S., and Ballivet, M.: Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors. EMBO J. 7: 595 (1988)

73         Claudio, T.: Molecular genetics of acetylcholine receptor-channels. In: Frontiers of Molecular Biology (D. Glover and D. Hames, eds) pp.63-142. IRL. London (1989)

74         Takai, T., Noda, M., Mishina, M., Shimizu, S., Furutani, Y., Kayano, T., Ikeda, T., Kubo, T., Taka¬hashi, T., Kuno, M. and Numa, S.: Cloning, sequencing and expression of cDNA for a novel subunit of acetylcholine receptor from calf muscle. Nature 315: 761 (1985)

75         Criado, M., Witzemann, V., Koenen, M. and Sakmann, B.: Nucleotide sequence of the rat muscle acetylcholine receptor epsilon subunit. Nucleic Acids Res. 16: 10920 (1988)

76         Buonanno, A., Mudd, J. and Merlie, j.: Isolation and characterisation of the beta and epsilon subunit genes of mouse muscle acetylcholine receptor. J. Biol. Chem. 264: 7611 (1989)

77         Raftery, M.A., Hunkapiller, M.W., Strader, C.D., and Hood, L.E.: Acetylcholine receptor: complex of homologous subunits. Science 208: 1454 (1980)

78         Dipaola, M., Czajkowski, C. and Carlin A.: The sidedness of the COOH terminus of the acetylcholine receptor delte subunit. J. Biol. Chem. 264: 15457 (1989)

79         Chavez, R.A. and Hall, Z.W.: Expression of fusion proteins of the nicotinic acetylcholine receptor from mammalian muscle identifies the membrane-spanning regions in the α and δ subunits. J. Cell Biol. 116: 385 (1992)

80         Ratnam, M., Nguyen, C.L., Rivier, J., Sargent, P.B. and Lindstrom, J.: Transmembrane topography of nicotinic acetylcholine receptor: immunological tests contradict theoretical predictions based on hydrophobicity profiles. Biochemistry 25: 2633 (1986)

81         Kordossi, A.A. and Tzartos, S. J.: Conformation of cytoplasmic segments of acetylcholine receptor α- and ™β-subunits probed by monoclonal antibodies: sensitivity of the antibody competition approach. EMBO J. 6: 1605 (1987)

82         Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T., and Numa, S.: Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 302: 528 (1983)

83         Lindstrom, J.M., Criado, S., Ratnam, M., Whiting, P., Ralston, S., Rivier, V., Sarin, V. and Sargent, P.: Using monoclonal antibodies to determine the struc-tures of acetylcholine receptors from electric organs, muscles and neurons. Ann. N. Y. Acad. Sci. 208 (1987)

84         Hucho, F., Oberthur, W. and Lottspeich, F.: The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices Μ II of the receptor subunits. FEBS Lett. 205: 137 (1986)

85         Imoto, Κ., Busch, C., Sakmann, B., Mishina, M., Konno, T., Nakai, J., Bujo, H., Mori, Y., Fukuda, K. and Numa, S.: Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335: 645 (1988)

86         Leonard, R.J., Labarca, C.G., Charnet, P., Davidson, N. and Lester, H.A.: Evidence that the M2 membrane-spanning region lines the ion channel pore of the nicotinic receptor. Science 242: 1578  (1988)

87         Sumikawa, K. and Gehle, V.M.: Assembly of mutant subunits of the nicotinic acetylcholine receptor lacking the conserved disulfide loop structure. J. Biol Chem. 267: 6286 (1992)

88         Kao, P., Dwork, A., Kaldany, R., Silver, M., Wideman, J., Stein, S., and Karlin, A.: Identification of the α subunit half cystine specifically labeled by an affinity reagent for the acetylcholine receptor binding site. J. Biol. Chem. 259: 11662 (1984)

89         Mitra, A.K., McCarthy, M.P. and Stroud, R.M.: 3-Dimensional structure of the nicotinic acetylcholine receptor and location of the major associated 43-kd cytoskeletal protein, determined at 22-A° by low dose electron microscopy and X-ray diffraction to 12.5-A°. J. Cell Biol. 109: 755 (1989)

90         Toyoshima, C. and Unwin, N.: Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes. Nature 336: 247 (1988)

91         Toyoshima, C. and Unwin, N.: Three-dimensional structure of the acetylcholine receptor by cryoelectron microscopy and helical image reconstruction. J. Cell Biol. 111: 2623 (1990)

92         Unwin, N.: Nicotinic acetylcholine receptor at 9 A° resolution. J. MoL Biol. 229: 1101 (1993)

93         Morel, E., Vernet der, Garabedian, B., Eymard, B., Raimond, F., Bustarret, F.-A., Bach, J.-F.: Binding and blocking antibodies to the human acetylcholine receptor: are they selected in various myasthenia gravis forms. Immunol. Res. 7: 212 (1988)

94         Heinemann, S., Bevan, S., Kulberg, R., Lindstrom, J., Rice.J.: Modulation of the acetylcholine receptor by anti-receptor antibodies. Proc. Natl. Acad. Sci. USA 74: 3090 (1977)

95         Engel, A.G.: Myasthenia gravis and myasthenic syndromes. Ann. Neurol. 16: 519 (1984)

96         Lindstrom, J.M., Lennon, V.A., Seybold, M.E., and Whittingham, S.: Experimental autoimmune myasthenia gravis and myasthenia gravis: biochemical and immunochemical aspects. Ann. NY. Acad. Sci. 274: 254 (1976)

97         Froehner, S.C.: Identification of exposed and buried determinants of the membrane-bound acetylcholine receptor from Torpedo californica. Biochemistry 20: 4905 (1981)

98         Sargent, P., Hedges, B., Tsavaler, L., Clemmons, L., Tzartos, S.J., and Lindstrom, J.: The structure and transmembrane nature of the acetylcholine receptor in amphibian skeletal muscle as revealed by cross-recting monoclonal antibodies. J. Cell Biol. 98: 609 (1984)

99         Tzartos, S.J., and Lindstrom, J.L.: Monoclonal antibodies to probe acetylcholine receptor structure: Localization of the MIR and detection of similarities between subunits. Proc. Natl. Acad. Sci. USA 77: 755 (1980)

100       Tzartos, S.J., Rand, D.E., Einarson, B.E., and Lindstrom, J.M.: Mapping of surface structures of Electrophorus acetylcholine receptor using monoclonal antibodies. J. Biol Chem. 256: 8635 (1981)

101       Tzartos, S.J., Langeberg, L., Hochschwender, S., and Lindstrom, J.: Demonstration of a main immunogenic region on acetylcholine receptors from human muscle using monoclonal antibodies to human receptor. FEBS Lett. 158: 116 (1983)

102       Tzartos, S.J., Langeberg, L., Hochschwender, S., Swanson, L. and Lindstrom, J.: Characteristics of monoclonal antibodies to denatured Torpedo and to native calf acetylcholine receptors: species, subunit and region specificity. J. Neuroimmunol. 10: 235 (1986)

103       Whiting, P.J., Vincent, A. and Newsom-Davis, J.: Myasthenia gravis: monoclonal anti-human acetylcholine receptor antibodies used to analyse antibody specificities and responces to treatment. Neurology 36: 612 (1986)

104       Heidenreich, F., Vincent, A., Roberts, A., and Newsom-Davis, J.: Epitopes on human acetylcholine receptor defined by monoclonal antibodies and myasthenia gravis sera. Autoimmunity 1: 285 (1988)

105       Jermy, A., Beeson, D. and Vincent, A.: Pathogenic autoimmunity to affinity-purified mouse acetylcholine receptor induced without adjuvant in BALB/c mice. Eur. J. Immunol. 23: 973 (1993)

106       Marx, A., O’Connor, R., Geuder, K.I., Hoppe, F., Schalke, B., Tzartos, S., Kalies, I., Kirchner, T. and Muller-Hermelink, H.K.: Characterization of a protein with an acetylcholine receptor epitope from myasthenia gravis-associated thymomas. Lab. Invest. 62: 279 (1990)

107       Sano, M., McCormick, D., Talib, S., Griesmann, G.E., and Lennon, V.: Identification of three extended antibody-binding segments in recombinant human muscle acetylcholine receptor α-subunit extracellular domain 1-210. Int. Immunol. 3: 983 (1991)

108       Ashizawa, T., Ruan, K-E., Jinnai, K. and Atassi, M.Z.: Profile of the regions on the α-chain of human acetylcholine receptor recognized by autoantibodies in myasthenia gravis. Mol. Immunol. 29: 1507 (1992)

109       Tzartos, S.J., Cung, M.T., Demange, P., Loutrari, H., Mamalaki, A., Marraud, M., Papadouli,I., Sakarellos, C., and Tsikaris, V.: The main immunogenic region (MIR) of the nicotinic acetylcholine receptor and the anti-MIR antibodies. Mol. Neurobiol. 5: 1 (1991)

110       Ratnam, M., Sargent, P., Sarin, V., Fox, J.L., Le Nguyen, D., Rivier, J., Criado, M., and Lindstrom, J.: Location of antigenic determinants on primary sequences of the subunits of the nicotinic acetylcholine receptor by peptide mapping. Biochemistry 25: 2633 (1986)

111       Barkas, T., Mauron, A., Roth, B., Alliod, C., Tzartos, S.J. and Ballivet, M.: Mapping the main immunogenic region and toxin binding site of the nicotinic acetylcholine receptor. Science 235: 77 (1987)

112       Tzartos, S.J., Kokla, A., Walgrave, S., and Con- ti-Tronconi, B.: Localization of the main immunogenic region of human muscle acetylcholine receptor to residues 67-76 of the α-subunit. Proc. Natl. Acad. Sci. USA 85: 2899 (1988)

113       Conti-Tronconi, B., Tzartos, S.J., and Lindstrom, J.: Monoclonal antibodies as probes of acetylcholine receptor structure. II. Binding to native receptor. Biochemistry 20: 2181 (1981)

114       Tzartos, S.J., Sophianos, D., and Efthimiadis, A.: Role of the main immunogenic region of acetylcholine receptor in Myasthenia Gravis. An Fab monoclonal antibody protects against antigenic modulation by human sera. J. Immunol. 134: 2343 (1985)

115       Tzartos, S.J., and Starzinski-Powitz, A.: Decrease In acetylcholine receptor content of human myotube cultures mediated by monoclonal antibodies to α,™β and γ subunits. FEBS Lett. 196: 91 (1986)

116       Swanson, L., Lindstrom, J., Tzartos, S.J., Schmued, L., O’Leary, D.D., and Cowan, W.M.: Immunohistochemical localization of monoclonal antibodies to the nicotinic acetylcholine receptor in the midbrain of the chich. Proc. Natl. Acad. Sci. USA 80: 4532 (1983)

117       Kubalek, E., Ralston, S., Lindstrom, J. and Unwin, N.: Location of subunits within the acetylcholine receptor by electron image analysis of tubular crystals from Torpedo marmorata. J. Cell Biol. 105: 9 (1987)

118       Barkas, T., Gabriel, J.M., Juillerat, M., Kokla, A., and Tzartos, S.J.: Localization of the main immunogenic region of the nicotinic acetylcholine receptor. FEBS Lett. 196: 237 (1986)

119       Barkas, T., Gabriel, J.-M., Mauron, A., Hughes, G.J., Roth, B., Alliod, C., Tzartos, S.J., and Ballivet, M.: Fine localisation of the main immunogenic region of the nicotinic acetylcholine receptor to residues 61-76  of the α-subunit. J. Biol. Chem. 268: 5916 (1988)

120       Tzartos, S.J., Efthimiadis, A., Morel, E., Eymard, B. and Bach, J.F. Neonatal myasthenia gravis: antigenic specificities of antibodies in sera from mothers and their infants. Clin. Exp. Immunol. 80: 376 (1990)

121       Saedi, M.S., Anand, R., Conroy, W.G., and Lindstrom, J. Determination of amino acids critical to the main immunogenic region of intact acetylcholine receptors by in vitro mutagenesis. FEBS Lett. 267: 55 (1990)

122       Wood, H., Beeson, D., Vincent, A., and Newsom-Davis, J. Epitopes on human acetylcholine receptor α-subunit: binding of monoclonal antibodies to recombinant and synthetic peptides. Biochem. Soc. Transact. 17: 220 (1989)

123       Papadouli, I., Potamianos, S., Hadjidakis, I., Bairaktari, E., Tsikaris, V., Sakarellos, C., Cung, M.T., Marraud, M., and Tzartos, S.J. Antigenic role of single residues within the main immunogenic region of the nicotinic acetylcholine receptor. Biochem. J. 269: 239 (1990)

124       Bellone, M., Tang, F., Milius, R. and Conti-Tronconl, B.M. The main immunogenic region of the nicotinic acetylcholine receptor. Identification of amino acid residues interacting with different antibodies. J. Immunol. 143: 3568 (1989)

125       Papadouli, I., Sakarellos, C. and Tzartos, S.J.: High-resolution epitope mapping and fine antigenic characterization of the main immunogenic region of the acetylcholine receptor. Eur. J. Biochem. 211: 227 (1993)

126       Cung, M.T., Marraud, M., Hadjidakis, I., Bairaktari, H., Sakarellos, C., Kokla, A. and Tzartos, S.: 2D-NMR study of a synthetic peptide containing the main immunogenic region of the Torpedo acetylcholine receptor. Biopolymers 28: 465 (1989)

127       Cung, M.T., Tsikaris, V., Demange, P., Papadouli, I., Tzartos, S.J., Sakarellos, C., and Marraud, M.: 2D-NMR and molecular dynamics analysis of the Torpedo californica acetylcholine receptor a67-76 fragment and of its [Ala76]-analogue. Peptide Res. 5: 16 (1992)

128       Tsikaris, V., Detsikas, E., Sakarellos-Daitsiotis, M., Sakarellos, C., Vatzaki, E., Tzartos, S., Marraud, M. and Cung, M.T.: Conformational requirements for molecular recognition of acetylcholine receptor main immunogenic region (MIR) analogues by monoclonal anti-MIR antibody: a two dimensional nuclear magnetic resonance and molecular dynamics approach. Biopolymers 33: 1123 (1993)

129       Hohlfeld, R., Toyka, Κ., Tzartos, S.J., Carson, W. and Conti-Tronconi, B. Human T helper lymphocytes in myasthenia gravis recognize the nicotinic receptor α-subunit. Proc. Natl. Acad. Sci. USA 84: 5379 (1987)

130       Loutrari, H., Tzartos, S.J. and Claudio, T. Use of Torpedo-mouse hybrid acetylcholine receptors reveals immunodominance of the α subunit in myasthenia gravis antisera. Eur. J. Immunol. 22: 2949 (1992)

131       Tzartos, S.J., Hochschwender, S., Vasquez, P., and Lindstrom, J. Passive transfer of experimental autoimmune Myasthenia Gravis by monoclonal antibodies to the main immunogenic region of the acetylcholine receptor. J. Neuroimmunol. 15: 185 (1987)

132       Lennon, V.A. and Griesmann, G.E. Evidence against acetylcholine receptor having a main immunogenic region a target for autoantibodies in myasthenia gravis. Neurology 39: 1069 (1989)

133       Lennon, V.A. and Lambert, E.H.: Myasthenia gravis induced by monoclonal antibodies to acetylcholine receptors. Nature 285: 238 (1980)

134       Sophianos, D. and Tzartos, S.J.: Fab fragments of monoclonal antibodies protect the human acetylcholine receptor against degradation caused by myasthenic sera. J. Autoimmun. 2: 777 (1989)

135       Mamalaki, A., Trakas, N. and Tzartos, S.J.: Bacteria expression of a single-chain Fv fragment which efficiently protects the acetylcholine receptor against antigenic modulation caused by myasthenic antibodies. Eur. J. Immunol. 23: 1839 (1993)

136       Riechmann, L., Clark, M., Waldmann, H. and Winter, G.: Reshaping human antibodies for therapy. Nature 332: 323 (1988)

Relative Papers

Online ISSN 1011-6575

Άρθρα Δημοσιευμένα σε αυτό το Περιοδικό Καταχωρούνται στα:

Articles published in this Journal are Indexed or Abstracted in: • Chemical Abstracts • Elsevier’s Bibliographic Databases: Scopus, EMBASE, EMBiology, Elsevier BIOBASE SCImago Journal and Country Rank Factor

Τι είναι η Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Διεθνής Έκδοση-Οδηγίες προς τους Συγγραφείς – 
What is Epitheorese Klinikes Farmakologias 
και Farmakokinetikes-International Edition-Instrunctions to Authors

Άρθρα Δημοσιευμένα στην Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Διεθνής Έκδοση – 
Articles Published in Epitheorese Klinikes Farmakologias 
και Farmakokinetikes-International Edition

Συντακτικη Επιτροπή-Editorial Board

ΕΤΗΣΙΑ ΣΥΝΔΡΟΜΗ 1994 – ANNUAL SUBSCRIPTION 1994
Γλώσσα Πλήρους Κειμένου – Full Text Language Αγγλικά, Γαλλικά – English, French
Παραγγελία – Αγορά – Order – Buy Ηλεκτρονική Μορφή: pdf (70 €) – Digital Type: pdf (70 €)

pharmakonpress[at]pharmakonpress[.]gr

Έντυπη Μορφή (70 € + έξοδα αποστολής) – Printed Type (70 € + shipping)

pharmakonpress[at]pharmakonpress[.]gr

 

 

Bookmark the permalink.

Comments are closed.