Τόμος 17 (2003) – Τεύχος 3 – Άρθρο 1 – Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Διεθνής Έκδοση – Volume 17 (2003) – Issue 3 – Article 1 – Epitheorese Klinikes Farmakologias και Farmakokinetikes-International Edition

 

Title Applications of gene therapy for the treatment of cancer
Authors Anastasios T. Kyventidis, Aristoniki G. Voulgaridou, Nikolaos T. Kyventidis and Maria Mironidou-Tzouveleki

Department of Pharmacology, Medical School, Aristotle University, Thessaloniki, Greece

Citation Kyventidis, A.T., Voulgaridou, A.G., Kyventidis, N.T., Mironidou-Tzouveleki, M.: Applications of gene therapy for the treatment of cancer, Epitheorese Klin. Farmakol. Farmakokinet. 17(3): 131-138 (2003)
Publication Date Received for publication: 15 July 2003

 Accepted for publication: 20 August 2003

Full Text Language English
Order – Buy  Ηλεκτρονική Μορφή: pdf (10 €) – Digital Type: pdf (10 €) 

pharmakonpress[at]pharmakonpress[.]gr

Keywords Cancer gene therapy, gene vectors, gene therapy strategies, cell targeting, immunogene, chemogene, tumor suppressor, antisense gene therapy, zinc fingers, inhibition of angiogenesis, endonucleases, oncolytic viruses, chemoprotection genes.
Other Terms review article
Summary The aim of this article is to review the latest progress concerning cancer gene therapy. By the term gene therapy it is meant the transfer of therapeutic genetic material into cells for the treatment of the causes of a particular disease. The recent advance in the field of molecular biology and the rapid development of recombinant-DNA technology have improved gene therapy. It is known that cancer arises from the genetic mutations of cells; therefore there is a possibility of causal cancer treatment by gene therapy. Key-point for the success of gene therapy is the development of gene vectors, which are able to transfer the therapeutic genes. Gene vectors can be classified as viral and non-viral vectors. The various gene therapy strategies are divided into six major categories, which are briefly analyzed. Finally, methods of cell targeting are presented.
References 1.    Bishop J.M.: Cancer: the rise of the genetic paradigm. Genes Dev. 9: 1309-1315 (1995)

2.    Wu Q., Moyana T., Xiang J.: Cancer Gene Therapy by Adenovirus – Mediated Gene Transfer. Curr. Gene Then 1: 101-122 (2001)

3.    Blaese R.M., et al.: Treatment of severe combined immunodeficiency due to adenosine deaminase deficiency with autologous lymphocytes transduced with a human ADA gene. Hum. Gene Ther. 1: 327-362 (1990)

4.    Blaese R.M., Culver K.W., Miller A.D., Carter C.S., Fleisher T., Clerici M., Shearer G., Chang L., Chiang Y., Tolstoshev P., et al.: T lymphocyte-directed gene therapy for ADA – SCID: initial trial results after 4 years. Science 270: 475-480 (1995)

5.    Romano G., Pacilio C., Giordano A.: Gene transfer technology in therapy: current applications and future goals. Stem Cells 17: 191-202 (1999)

6.    Dyer M.R., Herrling P.L.: Progress and potential for gene-based medicine. Mol. Ther. 1: 213-224 (2000)

7.    Nadeau I., Kamen A.: Production of Adenovirus Vector for Gene Therapy. Biotechnology Adv. 20: 475-489 (2003)

8.    Ogris M., Wagner E.: Targeting tumors with non-viral gene delivery systems. Drug Discovery Today 7: 479-485 (2002)

9.    Dash P.R., et al.: Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery. Gene Ther. 6: 643-650 (1999)

10.  Brown M.D., et al.: Gene delivery with synthetic (non-viral) carriers. Int. J. Pharm. 229: 1-21 (2001)

11.  Kircheis R., et al.: Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. J. Gene Med. T: 111— 120 (1999)

12.  Ogris M., et al.: PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 6: 595-605 (1999)

13.  Kichler A., et al.: Polyethilenimines: a family of potent polymers for nucleic acid delivery. In: Huang LE. et al.: Nonviral Vectors for Gene Delivery, Academic Press, pp. 191-206, 1999

14.  Wagner E., et al.: Delivery of drugs, proteins and genes into cells using transferrin as a ligand for receptor-mediated endocytosis. Adv. Drug. Deliv. Rev. 14: 113-136 (1994)

15.  Kircheis R., et al.: Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery. Gene Ther. 4: 409-418 (1997)

16.  Kircheis R., et al.: Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther. 8: 28-40 (2001)

17.  Kourie J.I. and Shorthouse A.A.: Properties of cytotoxic peptide-formed ion channels. Am. J. Physiol. Cell Physiol. 278: C1063-C1087 (2000)

18.  Ogris M., et al.: Melittin enables efficient vesicular escape and enhanced nuclear access of non-viral gene delivery vectors. J. Biol. Chem. 276: 47550-47555 (2001)

19.  Kichler A., et al.: Polyethylenimine-mediated gene delivery: a mechanistic study. J. Gene Med. 3: 135-144 (2001)

20.  Lafreniere R. and Rosenberg S.A.: Successful immunotherapy of murine experimental hepatic metastases with lymphokine-activated killer cells and recombinant interleukin-2. Cancer Res. 45: 3735-3741 (1985)

21.  Gansbacher B., Bannerji R., Daniels B., Zier K., Cronin K., Gilboa E.: Retroviral vector-mediated gamma-interferon gene transfer into tumor cells generates potent and long lasting anti-tumor immunity. Cancer Res. 50: 7820-7825 (1990)

22.  Creasey A., Reynolds M., Laird W.: Cures and partial regression of murine and human tumors by recombinant human tumor necrosis factor. Cancer Res. 46: 5687-5690 (1986)

23.  Ferrone S., Marincola F.M.: Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance. Immunol. Today 16: 487-494 (1995)

24.  Garrido F., Ruiz-Cabello F., Cabrera T., et al.: Implications for immunosurveillance of altered HLA class I phenotypes in human tumors. Immunol. Today 18: 89-96 (1997)

25.  Coulie G.P., Hanagiri T., Takenoyama M.: From tumor antigens to immunotherapy. Int. J. Clin. Oncol. 6: 163-170 (2001)

26.  Morel S., Lévy F., Burlet-Schiltz O., et al.: Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dedritic cells. Immunity 12: 107-117 (2000)

27.  Freeman S.M., Ramesh R., Munshi A., Whartenby K.A., Freeman J.L., Marrogi A.J.: In situ use of suicide genes for cancer therapy. In: Gene therapy of cancer, Eds. Lattime, E.C. and Gerson, S.L. Academic Press, San Diego, CA, pp. 55-176 (1999)

28.  Yasawa K, Fisher W., Brunicardi C.: Current Progress in Suicide Gene Therapy for Cancer. World J. Surg. 26: 783-789 (2002)

29.  Farzaneh F., Treize r U., Sterry W., Walden P.: Gene therapy of cancer. Immun. Today 19: 294-6 (1998)

30.  Chen S.H., Shine H.D., Goodman J.C., Grossman R.G., Woo S.L.C.: Gene therapy for brain tumors: regression of experimental glioma by adenovirus-mediated gene transfer in vivo. Proc. Natl. Acad. Sci. USA 91: 3054-3057 (1994)

31.  Caldas C., Hahn S.A., da Costa L.T., et al.: Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat. Genet. 8: 27-31 (1994)

32.  Gustin A., Pederson L., Miller R., Chan C., Vickers S.: Applications of Molecular Biology Studies to Gene Therapy Treatment Strategies. World J. Surg. 26: 854-860 (2002)

33.  Vousden K.H.: p53: death star. Cell 103: 691-694 (2000)

34.  Greenblatt M.S., Bennett W.P., Hollstein M., Harris C.C.: Mutations in the p53 tumor suppressor gene: Clues to cancer etiology and molecular pathogenesis. Cancer Res. 54: 4855-4878 (1994)

35.  Zeimet A.G., Riha K., Berger J., Widschwendter M., Hermann M., Daxenbichler G., Marth C.: New insights into p53 regulation and gene therapy for cancer. Biochem. Pharmacol. 60: 1153-1163 (2000)

36.  Eastham J.A., Grafton W., Martin C.M., Williams B.J.: Suppression of primary tumor growth and the progression to metastasis with p53 adenovirus in human prostate cancer. J. Urol. 164: 814-819 (2000)

37.  Grana X., Reddy E.: Cell cycle control in mammalian cells: role of cyclins, cyclin-dependent kinases (CDKs), growth suppressor genes, and cyclin-dependent kinase inhibitors (CKIs). Oncogene 11: 211-219 (1995)

38.  Kamb A., Gruis N., Weaver-Feldhaus J., et al.: A cell cycle regulator potentially involved in genes of many tumor types. Science 264: 436-440 (1994)

39.  Merlar A., Herman J., Mao L., et al.: 5′ CpG island methylation is associated with transcriptional silencing of the tumor suppressor p16/CDK2/MTS1 in human cancers. Nat. Med. 1: 686-692 (1995)

40.  Nobori T., Miura K., Wu D., Lois A., Takabayashi K., Carson D.: Deletion of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368: 753- 756 (1994)

41.  Wigler M.H., Parsons R.A., Druck T., et al.: Loss of heterozygosity at the familial RCC t(3;8) locus in most clear cell renal carcinomas. Cancer Res. 55: 5348-53 (1995)

42.  Kastury K., Baffa R., Druck T., et al.: Potential gastro-intestinal tumor suppressor locus at the 3p14.2 FRA3B site identified by homozygous deletions in tumor cell lines. Cancer Res 56: 978-83 (1996)

43.  Naylor S.L., Johnoson B.E., Minna J.D., et al.: Loss of heterozygosity of chromosome 3p markers in smafl cell lung cancer. Nature 329: 451-54 (1987)

44.  Hibi K., Takahashi T., Yamakawa K., et al.: Three distinct regions involved in 3p deletions in human lung cancer. Oncogene 7: 445-49 (1992)

45.  Huebner K., Hadaczek P., Siprashvili Z., et al.: The FHIT gene, a multiple tumor suppressor gene encompassing the carcinogen sensitive chromosome fragile site, FRA3B. Biochem. Biophys. Acta. (Reviews on Cancer) 1332: M65-M70 (1997)

46.  Glover T.W., Coyle-Morris J.F., Frederick P.L, et al.: Translocation t(3;8) (p14.2;q24,1) in renal cell carcinoma affects expression of the common fragile site at 3p14 (FRA3B) in lymphocytes. Cancer Genet. Cytogenet. 31: 69- 73(1988)

47.  Pekarsky Y., Zanesi N., Palamarchuk A., Hueber K., Croce C.: FHIT: from gene discovery to cancer treatment and prevention. Lancet Oncol. 3: 748-754 (2002)

48.  Jahnsen B. and Zangemeister-Wittke U.: Antisense therapy for cancer – the time of the truth. Lancet Oncol. 3: 672-683 (2002)

49.  Hahn S.A., Schutte M., Hoque A.T.M.S., et al.: DPC4, a candidate tumor suppressor gene at 18q21.1. Science 271: 350-353 (1996)

50.  Moskaluk C.A., Kern S.E.: Molecular genetics of pancreatic carcinoma. In Reber HA, editors, Pancreatic Cancer: Pathogenesis, Diagnosis and treatment, Humana Press, Totowa, NJ (1998)

51.  Beerli R.R., Barbas C.F. III: Engineering polydactyl zinc-finger transcription factors. Nature Biotechnology 20: 135-141 (2002)

52.  Pabo C.O., Peisach E., Grant R.A.: Design and selection of novel Cys2His2 zinc finger proteins. Annu. Rev. Biochem. 70.

53.  Pasqualini R., Barbas III C., Arap W.: Vessel maneuvers: zinc fingers promote angiogenesis. Nature Med. 8: 1427-1432 (2002)

54.  Beeli R.R., Dreier B., Barbas III C.F.: Positive and negative regulation of endogenous genes by designed transcription factors. Proc. Natl. Acad. Sci. USA 971: 495- 1500 (2000)

55.  Folkman J.: Tumor angiogenesis: Therapeutic implications. N. Eng. J. Med. 333: 1757-1763 (1971)

56.  Folkman J.: The vasculization of tumors. Sci. Am. 234: 58-73 (1976)

57.  Chen Q.R., Zhang L., Gasper W., Mixson J.: Targeting tumor angiogenesis with gene therapy. Mol. Gen. Metab. 74: 120-127 (2001)

58.  Folkman J.: Antiangiogenic gene therapy. Proc. Natl. Acad. Sci. USA 95: 9064-9066 (1998)

59.  Tanaka T., Manome Y., Wen P., Kufe D.W., Fine H.A.: Viral vector-mediated transduction of a modified platelet factor 4 cDNA inhibits angiogenesis and tumor growth. Nature Med. 3: 437-442 (1997)

60.  Boggio K., Di Carlo E., Rovero S., Cavallo F., Quaglino E., Lollini P.L, Nanni P., Nicoletti G., Wolf S., Musiani P., Forni G.: Ability of systemic interleukin-12 to hamper progressive stages of mammary carcinogenesis in HER2/neu transgenic mice. Cancer Res 60: 359-364 (2000)

61.  Sharpe R.J., Byers H.R., Scott C.F., Bauer S.I., Maione T.E.: Growth inhibition of murine melanoma and human colon carcinoma by recombinant human platelet factor 4. J. Natl. Cancer Inst. 82: 848-853 (1990)

62.  O’Reilly M.S., Holmgren L., Chen C., Folkman J.: Angiostatin induces and sustains dormancy of human primary tumors in mice. Nature Med 2: 689-692 (1996)

63.  O’Reilly M.S., Boehm T., Shing Y., Fukai N., Vasios G., Lane W.S., Flynn E., Birkhead J.R., Olsen B.R., Folkman J.: Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277-285 (1997)

64.  Saito R., Mizuno M., Kumabe T., Yoshimoto T., Tanuma S., Yoshida J.: Apoptotic DNA endonuclease (DNAase-gamma) gene transfer induces cell death accompanying DNA fragmentation in human glioma calls. J. Neurooncol. 63: 25-31 (2003)

65.  Spalletti-Cernia D., Sorrentino R., Di Gaetano S., Arciello A., Garbi C., Piccoli R., D’Allessio G., Vecchio G., Laccetti P., Santoro M.: Antineoplastic ribonucleases selectively kill thyroid carcinoma cells via caspase mediated induction of apoptosis. J. Clin. Endocrinol. Metab. 88: 2900-7 (2003)

66.  Shenk T.: Adenoviridae: The Viruses and Their Replication. In: Fields virology, 3rd ed, Eds. Knipe D.M., Fields B.N., Howley P.M. Lippincott-Raven, Philadelphia, Pa, pp 2111-2148 (1996)

67.  Kirn D.: Selectively replicating viruses as therapeutic agents against cancer. In: Gene therapy of cancer, Eds. Lattime E. C. and Gerson S.L. Academic Press, San Diego, CA, pp 235-248 (1999)

68.  Bischoff J.R., Kirn D.H., Williams A., Heise C., Horn S., Muna M., Ng L., Nye J.A., Sampson-Johannes A., Fattaey A., McCormick F.: An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274: 373-376 (1996)

69.  Heise C., Sampson-Johannes A., Williams A., McCormick F., Von Hoff D.D., Kirn D.H.: ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat. Med. 3: 639-645 (1997)

70.  Rafferty J.A., Hickson I., Chinnasamy N., Lashford L.S., Margison G.P., Dexter T.M., Fairbairn L.J.: Chemoprotection of normal tissues by transfer of drug resistance genes. Cancer Metastas. Rev. 15: 365-383 (1996)

71.  Gunji Y., Ochiai T., Shimada H., Matsubara H.: Gene Therapy for Cancer. Surg. Today 30: 967-973 (2000)

72.  Rots M.G., Curiel D.T., Gerritsen W.R., Haisma H.T.: Targeted cancer gene therapy: the flexibility of adenoviral gene therapy vectors. Journal of Controlled Release 87: 159-165 (2003)

73.  Haisma H.J., Pinedo H.M., Rijswijk A., der Meulen-Muileman L., Sosnowski B.A., Ying W., Beusechem V.W., Tillman B.W., Gerritsen W.R., Curiel D.T.: Tumor-specific transfer via an adenoviral vector targeted to the pan-carcinoma antigen EpCAM. Gene Ther. 6: 1469-1474 (1999)

74.  Heideman D.A., Snijders P.J., Craanen M.E., Bioemena E., Meijer C.J., Meuwissen S.G., van Beusechem V.W., Pinedo H.M., Curiel D.T., Haisma H.J., Gerritsen W.R.: Selective gene delivery toward gastric and esophageal adenocarcinoma cells via EpCAM-targeted adenoviral vectors. Cancer Gene Ther. 8: 342-351 (2001)

75.  Haviv Y.S., Curiel D.T.: Conditional gene targeting for cancer gene therapy. Adv. Drug Deliv. Rev. 53: 135-154 (2001)

76.  Pitts J.D.: Cancer gene therapy: a bystander effect using the gap junctional pathway. Mol. Carcinog. 11: 127- ISO (1994)

77.  Wadia J.S. and Dowdy S.F.: Protein transduction technology. Curr. Opin. Biotechnol. 13: 52-56 (2002)

Relative Papers

Online ISSN 1011-6575

Άρθρα Δημοσιευμένα σε αυτό το Περιοδικό Καταχωρούνται στα:

Articles published in this Journal are Indexed or Abstracted in: • Chemical Abstracts • Elsevier’s Bibliographic Databases: Scopus, EMBASE, EMBiology, Elsevier BIOBASE SCImago Journal and Country Rank Factor

Τι είναι η Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Διεθνής Έκδοση-Οδηγίες προς τους Συγγραφείς – 
What is Epitheorese Klinikes Farmakologias 
και Farmakokinetikes-International Edition-Instrunctions to Authors

Άρθρα Δημοσιευμένα στην Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Διεθνής Έκδοση – 
Articles Published in Epitheorese Klinikes Farmakologias και Farmakokinetikes-International Edition

Συντακτικη Επιτροπή-Editorial Board

ΕΤΗΣΙΑ ΣΥΝΔΡΟΜΗ 2003– ANNUAL SUBSCRIPTION 2003
Γλώσσα Πλήρους Κειμένου – Full Text Language Αγγλικά – English
Παραγγελία – Αγορά – Order – Buy Ηλεκτρονική Μορφή: pdf (70 €) – Digital Type: pdf (70 €)

pharmakonpress[at]pharmakonpress[.]gr

Έντυπη Μορφή (70 € + έξοδα αποστολής) – Printed Type (70 € + shipping)

pharmakonpress[at]pharmakonpress[.]gr

 

 

 

 

 

Bookmark the permalink.

Comments are closed.