Τόμος 7 (1993) – Τεύχος 1 – Άρθρο 3 – Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Διεθνής Έκδοση – Volume 7 (1993) – Issue 1 – Article 3 – Epitheorese Klinikes Farmakologias και Farmakokinetikes-International Edition

 

Title Design of potential drugs through protein crystallography
Authors Anastassios C. Papageorgiou, Nikos G. Oikonomakos and Demetrios D. Leonidas

Institute of Biological Research and Biotechnology, The National Hellenic Research Foundation

Citation Papageorgiou, A.C., Oikonomakos, N.G., Leonidas, D.D.: Design of potential drugs through protein crystallography, Epitheorese Klin. Farmakol. Farmakokinet. 7(1): 27-47 (1993)
Publication Date Accepted for publication: 2 December 1992
Full Text Language English
Order – Buy  Ηλεκτρονική Μορφή: pdf (10 €) – Digital Type: pdf (10 €) 

pharmakonpress[at]pharmakonpress[.]gr

Keywords Protein crystallography, rational drug design, enzyme inhibitors.
Other Terms review article
Summary Most of the drugs function as inhibitors of the catalytic activity of some target enzymes. Accurate knowledge of the three-dimensional structure of the complex enzyme-inhibitor is recognized as a starting point in rational drug design. With the great advances made in the determinations of the structures of several enzymes at almost atomic resolution it should be possible to approach the problem of rational drug design. This is already being attempted with the design of anti-tumor agents that inhibit enzymes such as dihydrofolate reductase, for factors that control blood pressure by inhibiting renin and angiotensin-converting enzyme, etc. This article will describe these advances with special reference to those small molecule enzyme interactions that may influence enzyme function and produce a beneficial biological effect.
References 1. Fersht, A.: Enzyme structure and mechanism, 2nd ed. W.H. Freeman and company, New York, 1985

2. Blundell, T.L. and Johnson, L.N.: Protein Crystallography, Academic Press, New York, 1976

3. Hopfinger, A.J.: Computer-Assisted drug design: J. Med. Chem. 28: 1133 (1985)

4. Hol, W.G.L.: Protein crystallography and computer graphics-toward rational drug design. Angew. Chem. Int. Ed. Engl. 25: 767 (1986)

5. Goodford, P.J.: Drug design by the method of receptor fit. J. Med. Chem. 27: 557 (1984)

6. Beddell, C.R. Designing drugs to fit a macromolecular receptor. Chem. Soc. Rev. 13: 279 (1984)

7. Branden, C. and Tooze, J.: Introduction to Protein structure. Garland Publishing, Inc., New York and London, 1991

8. Knowles, J.: Tinkering with enzymes. Science 236:1252 (1987)

9. Darnell, J., Lodish, H. and Baltimore, D.: Molecular cell biology, Scientific American Books, N. York, 1986

10. Broom, A.: Rational design of enzyme inhibitors. Multi- substrate analogue inhibitors. J. Med. Chem. 32: 2 (1989)

11. Fersht, A.: Basis of biological specificity. Trends Biochem. Sci. 9: 145 (1984)

12. Kraut, J.: How do enzymes work? Science 242: 533 (1988)

13. Fersht, A.R.: Dissection of the structure and activity of the tyrosyl-tRNA Synthetase by site-directed mutagenesis. Biochemistry 26: 8031 (1987)

14. Fersht, A.R., Shi, J.P., Knill-Jones, J., Lowe, D.M., Wilkinson, A.J, Blow, D.M., Brick, P., Carter, P., Waye, M.M.Y. and Winter, G.: Hydrogen bonding and biological specificity analyzed by protein engineering. Nature 314: 235 (1985)

15. Street, I., Armstrong, C.R. and Withers, S.G.: Hydrogen bonding and specificity. Fluorodeoxy sugars as probes of hydrogen bonding in the glycogen phosphorylase-glucose complex. Biochemistry 25: 6021 (1986)

16. Gund, P., Andose, J.D., Rhodes, J.B. and Smith, G.: Three-dimensional molecular modelling and drug design. Science 208: 1425 (1980)

18. Papageorgiou, A.C., Oikonomakos, N.G., Leonidas, D.D., Bernet, B., Beer, D. and Vasella, A.: The binding of D-gluconohydroximo-1,5-lactone to glycogen phosphorylase: kinetic, ultracentrifugation and crystal- lographic studies. Biochem. J. 274: 329 (1991)

19. Karplus, M. and Petsko, G.A.: Molecular dynamics simulations in biology. Nature 347: 631 (1990)

20. Oikonomakos, N.G., Acharya, K.R. and Johnson, L.N.: Rabbit muscle glycogen phosphorylase b. The structural basis of activation and catalysis. In: Post-translational Modification of Proteins (Harding, J.J. and Crabbe, eds), p.81, CRC Press, Boca Raton, FL, 1992

21.  Stalmans, W.: The role of the liver in the homeostasis of blood glucose. Curr. Top. Cell. Regul. 11: 51 (1976)

22.  Hers. H.G.: The control of glycogen metabolism in the liver. Annu. Rev. Biochem. 45: 167 (1976)

23.  Witters, L.A. and Avruch, J.: Insulin regulation of hepatic glycogen synthase and phosphorylase. Biochemistry 17: 406 (1978)

24.  Hartmann, H., Probst, I., Jungermann, K. and Creutz-feldt, W: Inhibition of glycogenolysis and glycogen phosphorylase by insulin and proinsulin in rat hepatocyte cultures. Diabetes 36: 551 (1987)

25.  Madsen, N.B.: Glycogen phosphorylase. ln:The Enzymes, vol. 17, 3rd ed. (Boyer, P.D. and Krebs, E.G., eds.), p. 366, Academic Press, New York, 1986

26.  Martin, J.L., Veluraja, Κ., Johnson L.N., Fleet, G.W.J., Ramsden, N.G., Bruce, I., Orchard, M.G., Oikonomakos, N.G., Papageorgiou, A.C., Leonidas, D.D. and Tsitura, H.S.: Glucose analogue inhibitors of glycogen phosphorylase: the design of potential drugs for diabetes. Biochemistry 30: 10101 (1991)

27.  Martin, J.L., Johnson, L.N. and Withers, S.G.: Comparison of the binding of glucose and glucose-1-phosphate derivatives to T-state glycogen phosphorylase b. Biochemistry 29:10745 (1990)

28.  Barford, D., Schwabe, J.W.R, Oikonomakos, N.G., Acharya, K.R., Hajdu, J., Papageorgiou, A.C., Martin, J.L., Vasella, A. and Johnson, L.N.: Channels at the catalytic site of glycogen phosphorylase: Binding and kinetic studies with the β-glycosidase inhibitor D-gluconohydroximo-1,5-lactone A/-phenylurethane. Biochemistry 27: 6733 (1988)

29.  Bolin, J.T., Filman, D.J., Matthews, D.A., Hamlin, R.C. and Kraut, J.: Crystal structures of E. coli and L. casei dihydrofolate reductase refined at 1.7 A resolution. J. Biol. Chem. 257: 13650 (1982)

30.  Filman, D.J., Bolin, J.T., Matthews, D.A. and Kraut, J.: Crystal structure of E. coli and L. casei dihydrofolate reductase refined at 1.7 A resolution. J. Biol. Chem. 257: 13663 (1982)

31.  Volz, K.W., Matthews, D.A., Alden, R.A., Freer, S.T., Hansch, C., Kaufman, B.T. and Kraut, J.: Crystal structure of avian dihydrofolate reductase containing phenyltriazine and NADPH. J. Biol. Chem. 257: 2528 (1982)

32.  Baker, D.J., Bebbell, C.R., Champness, J.N., Goodford, P.J., Norrington, F.E.A, Smith, D.R. and Stammers, D.K.: The binding of trimethoprim to bacterial dihydrofolate reductase. FEBS Lett. 126: 49 (1981)

33.  Kuyper, L.F., Roth, B., Baccanari, D.P., Ferone, R., Beddell, C.R., Champness, J.N., Stammers, D.K., Dann, J.G., Norrington, F.E.A., Baker, D.J. and Goodford, P.: Receptor-based design of dihydrofolate reductase inhibitors. Comparison of crystallographically determined enzyme binding with enzyme affinity in a series of carboxy-substituted trimethoprim analogues: J. Med. Chem 28: 303 (1985)

34.  Roth, B.: Design of dihydrofolate reductase inhibitors from X-ray crystal structures. Fed. Proc. 45: 2765 (1986)

35.  Verheij, H.M., Slotboom, A.J. and de Haas, G.H.: Structure and function of phospholipase A2. Rev. Physiol. Biochem. Pharmacol. 91: 91 (1981)

36.  Hirata, F. and Axelrod, J.: Phospholipid methylation and biological signal transmission. Science 209: 1082 (1980)

37.  Okamoto, M., Οηο, T., Tojo, H. and Yamano, T.: Immunochemical relatedness between secretory phos¬pholipase A2 and intracellular phospholipase A2. Biochem. Biophys. Res. Comm. 128: 788 (1985)

38.  Renetseder, R., Brunie, S., Dijkstra, B.W, Derenth, J. and Sigler, P.B.: A comparison of the crystal structures of phospholipase A2 from bovine pancreas and crotalus atrox venom. J. Biol. Chem. 260: 11627 (1985)

39.  Dijkstra, B.W., Renetseder, R., Kalk, K.H., Hol, W.G.J. and Drenth, J.: J. Structure of porcine pancreatic phospholipase A2 at 2.6 A resolution and comparison with bovine phospholipase A2. Mot. Biol. 168: 163 (1983)

40.  Scott, D.L., White, S.P., Otwinowski, Z., Yuan, W., Gelb, Μ.H. and Sigler, P.: Inerfacial catalysis: The mechanism of phospholipase A2: Science 250: 1541 (1990)

41.  White, S.P., Scott, D.L., Otwinowski, Z., Gelb, M.H. and Sigler, P.B.: Crystal structure of cobra-venom phospholipase A2 in a complex with a transition-state analogue: Science 250: 1560 (1990)

42.  Scott, D.L., Otwinowski, Z., Gelb, Μ.H. and Sigler, P.B.: Crystal structure of bee-venom phospholipase A2 in a complex with a transition-state analogue. Science 250: 1563 (1990)

43.  Renetseder, R., Dijkstra, B.W., Huizinga, K., Kalt, K.H. and Drenth, J.: Crystal structure of bovine pancreatic phospholipase A2 inhibited by p-bromo-phenacyl-bromide. J. Mol. Biol. 200: 181 (1988)

44.  Thunissen, M.M.G.M., AB, E., Kalk, K.H., Drenth. J., Dijkstra, B.W., Kuipers, O.P., Dijkman, R., Haas, G.H. and Verheij, H.M.: X-ray structure of phospholipase A2 with a substrate- derived inhibitor: Nature 347: 689 (1990)

45.  Scott, D.L., White, S.P., Browning, J.L., Rosa, J.J., Gelb, M.H. and Sigler, P.B.: Structures of free and inhibited human secretory phospholipase A2 from inflammatory exudate. Science 254: 1007 (1991)

46.  Christianson, D.W. and Lipscomb, W.N.: Carboxypeptidase A. Acc. Chem. Res. 22: 62 (1989)

47.  Colman, P.M., Jansonious, J.N. and Matthews, B.W.: The structure of thermolysin: An electron density map at 2.3 A resolution. J. Mol. Biol. 70: 701 (1972)

48.  Gushmann, D.W., Cheung, H.S., Sabo, E.F. and Ondetti, M.A.: Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxylalkanoyl and mercaptoalkanoyl amino acids. Biochemistry 16: 5484 (1977)

49.  Andrews, P.R., Carson, J.M., Caselli, A., Spark, M.J. and Woods, R.: Conformational analysis and active site modelling of angiotensin-converting enzyme inhibitors. J. Med. Chem. 28: 393 (1985)

50.  Kraut, J.: Serine proteases: Structure and mechanism of catalysis. Ann. Rev. Biochem. 46: 331 (1977)

51.  Bode, W., Meyer, E. Jr. Powers, J.C.: Human leucocyte and porcine pancreatic elastase: X-ray crystal structures, mechanism, substrate specificity and mechanism-based inhibitors Biochemistry 28: 1951 (1989)

52.  Bode, W., Mayr, I., Baumann, U., Huber, R., Stone, S.R. and Hofsteenge, J.: The refined 1.9 A crystal structure of human α-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J. 8: 3467 (1989)

53.  Grutter, M., Priestle, J.P., Rahuel, J., Grossenbacher, H., Bode, W., Hofsteenge, J. and Stone, S.R.: Crystal structure of the thrombin-hirudin complex: a novel mode of serine protease inhibition. EMBO J. 9: 2361 (1990)

54.  Hansch, C., McClarin, J., Klein, T. and Langridge, R.: A quantitative structure-activity relationship and molecular graphics study of carbonic anhydrase inhibitors. Mol. Pharmacol. 27: 493 (1985)

55.  Vedani, A. and Meyer, E.F.: Structure-activity relationships of sulfonamide drugs and human carbonic anhydrase C: Modeling of inhibitor molecules into the receptor site of the enzyme with an interactive computer graphics display. J. Pharm. Sci. 73: 352 (1984)

56.  Balwin, J.J., Ponticello, G.S., Anderson, P.S., Christy, M.E., Murcko, M.A., Randall, W.C., Schwam, H., Sur- gue, M.F., Springer, J.P., Gautheron, P., Grove, J., Mallorga, P., Viader, M.-P., McKeever, B.M. and Navia, M.A.: Thienothiopyran-2-sulfonamides: Novel topically active carbonic anhydrase inhibitors for the treatment of glaucoma. J. Med. Chem. 32: 2510 (1989)

57.  James, M.N.G.: An X-ray crystallographic approach to enzyme structure function. Can. J. Bioch. 58: 251 (1980)

58.  Blundell, T.L., Jenkins, J.A., Sewell, B.T., Pearl, L.H., Cooper, J.B., Tickle, Veerapandian, B. and Wood, S.P.: X-ray analysis of aspartic proteases. The three-dimensional structure of 2.1 A resolution of endothiapepsin. J. Mol. Biol. 211: 919 (1990)

59.  Sielecki, A., Hayakawa, Κ., Fujinaga, M., Murphy, M.E.P., Fraser M., Muir, A.Κ., Carilli, C.T., Lewicki, J.A., Baxter, J.D. and James, M.N.G.: Structure of recombinant human renin, a target for cardiovascular-active drugs at 2.5 A resolution: Science 243: 1346 (1989)

60.  Miller, M., Jaskolski, M., Rao, M.J.Κ., Leis, J. and Wlodawer, A.: Crystal structure of a retroviral protease proves relationship to aspartic protease family Nature 337: 576 (1989)

61.  Wlodawer, A., Miller, M., Jaskolski, M., Sathyanarayana, B.K., Balwin, E., Weber, I.T., Selk, L.M., Clawson, L., Schneider, J. and Kent, S.B.H.: Conserved folding in retroviral proteases: Crystal structure of a synthetic HIV-1 protease. Science 245 : 616 (1989)

62.  Huff, J.R.: HIV protease. A novel chemotherapeutic target for AIDS: J. Med. Chem. 34: 2305 (1991)

63.  Richards, A.D., Roberts, R., Dunn, B.M., Graves, M.C. and Kay, J.: Effective blocking of HIV-1 proteinase activity by characteristic inhibitors of aspartic proteinase: FEBS Lett. 247: 113 (1989)

64.  Blundell, T.L., Cooper, J., Foundling, S.I., Jones, D.M., Atrash, B. and Szelke, M.: On the rational design of renin inhibitors. X-ray studies of aspartic proteinases complexed with transition-state analogues. Biochemistry, 26: 5585 (1987)

65.  Blundell, T. and Pearl, L. A second front against AIDS. Nature 337: 596 (1989)

66.  Erickson, J., Neidhart, D.J., VanDrie, J., Kempf, D.J., Wang, X.C., Norbeck, D.W., Plattner, J.J., Rittenhouse, J.W., Turon, M., Wideburg,, N., Kohlbrenner, W.E., Simmer, R., Helfrich, R., Paul, D.A. and Knigge, M.: Design, activity and 2.8A crystal structure of a C2 symmetric inhibitor complexed to HIV-1 protease: Science 249: 527 (1990)

67.  Dideberg, O., Charlier, P., Wery, J.P., Dehottay, P., Dusart, J., Erpicum, T., Frere, J.M. and Ghuysen, J.M.: The crystal structure of the β-lactamase of streptomyces albus G at 0.3 nm resolution. Biochem. J. 245: 911 (1987)

68.  Herzberg, O. and Moult, J.: Bacterial resistance to β-lactam antibiotics. Crystal structure of β-lactamase from S. aureus PC1 at 2.5 A resolution. Science 236: 694 (1987)

69.  Toomer, C.A., Lambert, P.A., Sansom, C.E. and Schwalbe, C.H.: Active-site modelling of class I β -lactamases. Biochem. Soc. Trans. 18: 921 (1990)

70.  Appelt, K., Bacquet, R.J., Bartlett, C.A., Booth, C.L.J., Freer, S.T. et at.: Design of enzyme inhibitors using iterative protein crystallographic analysis: J. Med. Chem. 34: 1925 (1991)

71.  Hardy, L.W., Finer-Moore, J.S., Montfort, W.R., Jones, M.O., Santi, D.V. and Stroud, R.M.: Atomic structure of thymidylate synthase. Target for rational drug design. Science 235: 448 (1987)

72.  Matthews, D.A., Appelt, K., Oatley, S.J., and Xuong, N.H.: Crystal structure of E. coli thymidylate synthase containing bound 5-fluoro-2′-deoxyuridylate and 10-propargyl- 5.8-dideazafolate. J. Mol. Biol. 214: 923 (1990)

73.  Matthews, D.A., Villafranca, J.E., Janson, C.A., Smith, W.W., Welsh, K. and Freer, S.: Stereochemical mechanism of action for thymidylate synthase based on the X-ray structure of the covalent inhibitory ternary complex with 5-fluoro-2-deoxyuridylate and 5,10-methyle-netetrahydrofolate. J. Mol. Biol. 214: 937 (1990)

74.  Mitsuya, H., Yarchoan. R. and Broder, S.: Molecular targets for AIDS therapy. Science 249: 1533 (1990)

75.  Davies, J.F., Hostomska, Z., Hostomsky, Ζ., Jordan, S.Ft. and Matthews, D.A.: Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase. Science 252: 89 (1991)

76.  Lowe, D.M., Aitken, A., Brandley, C., Darby, G.K., Larder, B.A., Powell, K.L., Purifoy, D.J.M., Tisdale, M. and Stammers, D.K.: HIV-1 reverse transcriptase: Crystallization and analysis of domain structure by limited proteolysis. Biochemistry 27: 8884 (1988)

77.  Arnold, E., Jacobo-Molina A., Nanni, R.G., Williams, R.G., Lu, X., Ding, J., Clark, A.D., Zhang, A., Ferris, A., Clark, P., Hizi, A. and Hughes, S.H.: Structure of HIV-1 reverse transcriptase/DNA complex at 7 A resolution showing active site locations. Nature 357 : 85 (1992)

78.  Ringe, D.: Proteases: to each his own. Nature 356: 748 (1992)

79.  Cerretti, D.P., Kozlosky, C.J., Mosley, B., Nelson, N., Van Ness, K., Greenstreet, T.A., March, C.J., Kronheim, S.R., Druck, T., Cannizzaro, L.A., Huebner, K. and Black, R.: Molecular cloning of the interleukin-1ß converting enzyme. Science 256 : 97 (1992)

80.  Thornberry, N.A., Bull, H.G., Calaycay, J.R., Chapman, K.T., Howard, A.D., Kostura, M.J., Miller, D.K. et al.: A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature 356: 768 (1992)

81.  Dhanaraj, V., Dealwis, C.G., Frazao, C., Badasso, M., Sibanda, B.L., Tickle, I.J., Cooper, J.B., Driessen, H.P.C., Newman, M., Aguiral, C., Wood, S.P., Blundell, T.L., Hobart, P.M., Geoghegan, K.F., Ammirati, M.J., Danley, D.E., O’Connor, B.A. and Hoover, D.J.: X-ray analyses of peptide-inhibitor complexes define the structural basis of specificity for human and mouse renins. Nature 357: 466 (1992)

82.  Kohlstaedt, L.A., Wang, J., Friedman, J.M., Rice, P.A. and Steitz, T.A.: Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256: 1783 (1992)

83.  Strynadka, N.C.J., Adachi, H., Jensen, S.E., Johns, Κ., Sielecki, A., Betzel, C., Sutoh, Κ., and James, M.N.G.: Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 A resolution. Nature 359: 700 (1992)

Relative Papers

Online ISSN 1011-6575

Άρθρα Δημοσιευμένα σε αυτό το Περιοδικό Καταχωρούνται στα:

Articles published in this Journal are Indexed or Abstracted in: • Chemical Abstracts • Elsevier’s Bibliographic Databases: Scopus, EMBASE, EMBiology, Elsevier BIOBASE SCImago Journal and Country Rank Factor

Τι είναι η Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Διεθνής Έκδοση-Οδηγίες προς τους Συγγραφείς – 
What is Epitheorese Klinikes Farmakologias 
και Farmakokinetikes-International Edition-Instrunctions to Authors

Άρθρα Δημοσιευμένα στην Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Διεθνής Έκδοση – 
Articles Published in Epitheorese Klinikes Farmakologias 
και Farmakokinetikes-International Edition

Συντακτικη Επιτροπή-Editorial Board

ΕΤΗΣΙΑ ΣΥΝΔΡΟΜΗ 1993 – ANNUAL SUBSCRIPTION 1993
Γλώσσα Πλήρους Κειμένου – Full Text Language Αγγλικά – English
Παραγγελία – Αγορά – Order – Buy Ηλεκτρονική Μορφή: pdf (70 €) – Digital Type: pdf (70 €)

pharmakonpress[at]pharmakonpress[.]gr

Έντυπη Μορφή (70 € + έξοδα αποστολής) – Printed Type (70 € + shipping)

pharmakonpress[at]pharmakonpress[.]gr

 

 

 

Bookmark the permalink.

Comments are closed.