Τόμος 10 (1996) – Τεύχος 2 – Άρθρο 3 – Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Διεθνής Έκδοση – Volume 10 (1996) – Issue 2 – Article 3 – Epitheorese Klinikes Farmakologias και Farmakokinetikes-International Edition

Title Implication of free radicals for platelet aggregation: antiplatelet effects of free radical scavengers, ex vivo
Authors Spiros Karkabounas, Georgios Sofis and Angelos Evangelou

Laboratory of Experimental Physiology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece

Citation Karkabounas, S., Sofis, G., Evangelou, A.: Implication of free radicals for platelet aggregation; antiplatelet effects of free radical scavengers, ex vivo, Epitheorese Klin. Farmakol. Farmakokinet. 10(2): 84-91 (1996)
Publication Date Received for publication: 1 April 1996

Accepted for publication: 10 June 1996

Full Text Language English
Order – Buy  pharmakonpress[at]pharmakonpress[.]gr
Keywords Free radicals, platelet aggregation, antiplatelet effects, free radical scavengers, antioxidants, PAF, arachidonic acid, vitamin C, reduced glutathione, butyl hydroxytoluene, trimetazidine, phenylbutylnitrone, dehydroascorbic acid, ex vivo.
Other Terms review article
Summary The possible implication of free radicals for the biochemical procedures leading to platelet aggregation and its inhibition was investigated by means of weil known free radical scavengers and/or antioxidants. Washed rabbit platelets were used in order to investigate the possible effects of free radical scavengers and/or antioxidants, on PAF- and AA-induced platelet aggregation. Platelet suspensions were incubated with CP/CPK prior to the aggregation tests. Pretreatment of platelets with ASA was applied for testing PAF-induced aggregation. Vitamin C, reduced glutathione (GSH), butyl hydroxytoluene (BHT), trimetazidine (TMZ), phenylbutylnitrone (PBN) and the oxidized form of ascorbic acid, dehydroascorbic acid (DHAA), were added in platelet suspensions in various concentrations before aggregation with PAF and AA. Vitamin C oxidation during platelet activation with PAF was photometrically monitored. Effects of the substances tested, on linoleic acid-lipoxygenase reaction was also elaborated, in vitro. All substances tested, except DHAA, inhibited PAF- and AA-induced irreversible platelet aggregation at final concentrations of 10-4 M (IC50) and 10-3 M (IC100). Linoleic acid-lipoxygenase reaction was also remarkably inhibited by concentrations of 10-5 M, of all of the substances tested, except of DHAA. Inhibition of PAF- and AA-induced platelet aggregation and linoleic acid-lipoxygenase reaction by well-known free radical scavengers and/or antioxidants, oxidation of vit. C during platelet activation and failure of dehydroascorbic acid to exert any inhibiting effect on the above procedures, indicate that intraplatelet free radicals are possibly involved in platelet aggregation. Scavenging of such free radical species or reducing effects of the substances tested may prevent oxidation of Fe2+ to Fe3+ at the active sites of the enzymes involved to arachidonic acid metabolism (lipo- and cyclooxygenase), inducing thus inactivation of the biochemical pathways leading to platelet aggregation.
References 1.    Sless W.: Molecular mechanisms of platelet activation. Physiol. Rev. 69: 58-178 (1989)

2.    Vargafting B.B., Chignard M., Benveniste J.: Present concepts on the mechanism of platelet aggregation. Bioch. Pharmacol. 30: 263-271 (1981)

3.    McManus L.M., Hanahan D.J., Pinkard R.N.: Human platelet activation by acetyl glyceryl either phosphorycholine (AGEPC). J. Clin. Invest. 67: 903-907 (1981)

4.    Cargill D.I., Cohen D.S., Van Valen R.J., Klimek J.J., Levin R.P.: Aggregation release and desensitization induced in platelets from five species of platelet-activating factor(PAF). Thromb. Haemost. 49: 204-207 (1983)

5.    Demopoulos C.A., Pinkard R.N., Hanahan D.J.: Platelet-activating factor evidence for 1-0-alkyl-acetyl-sn-glycero-3-phosphorycholine as the active component. J. Biol. Chem. 254: 9355-9358 (1979)

6. Singh D., Greenwald J.E., Bianchine J., Metz E.N., Sagore A.I.,Jr: Evidence for the generation of hydroxyl radical during arachidonic acid metabolism by human platelets. Am. J. Hematol. 11: 2303-2307 (1981)

7.    Jahn B., Hanse G.M.: Oxygen radical generation in human platelets: Dependence on 12-lipoxygenase activity and on the glutathione cycle. Int. Arch. Allergy Appl. Immunol. 93: 73-79 (1990)

8.    Del Principe D., De Matteis W., Di Corpo M.L., Di Giulio S., Finanzi-Argo A.: Hydrogen peroxide has a role in the aggregation of human platelets. FEBS 185: 142-146 (1985)

9.    Salvemini D., Bolting R.: Modulation of platelet function by free radicals and free radical scavengers. TIPS 14: 36-42 (1993)

10.  Sofis G.: Investigation of free radicals involvement to platelet aggregation (greek). Thesis. Medical Faculty, University of Ioannina, pp. 1-220,1992

11.  Evangelou A., Karkabounas S., Sofis G., Charalambopoulos K., Stefanou P., Liveris K.: The role of free radicals on PAF-induced platelet aggregation. Medical Annals 15: 392-398 (1992)

12.  Rose R.C., Bude A.M.: Biology of free radical scavengers: an evaluation of ascorbate. FASEB J. 7: 1135-1142 (1993)

13.  Benveniste J., Henson P.M., Cohrane C.G.: Leukocytedependent histamin release from rabbit platelets. The role of basophils, IgE and a platelet-activating factor. J. Exp. Med. 136: 1365-1377 (1972)

14.  Fong D., Etrei K., Lee F.P., Lin T., Lam K.W.: Factors affecting ascorbate acid oxidation in aqueous humour. Cure. Eye Res. 6: 357-361 (1987)

15.  Mansuy D., Cucouru C., Biatry B., Biatoni J.P.: Soybean lipoxygenase catalyzed oxidations by linoleic acid hydroperoxide: Different reducing substrates and dehydrogenation of phenidone and BW 755C. Biochim. Biophys. Res. Commun. 151: 339-346 (1988)

16.  Clapp H.C., Banerjee A., Rotenberg S.A.: Inhibition of soybean lipoxygenase-1 by N-alkydydroxylamrnes. Biochemistry 24: 1826-1830 (1985)

17.  Siegel M.I., McConell R.T., Abrahams S.L., Porter N.A., Cuatrecasas P.: Regulation of arachidonic acid metabolism via lipoxygenase and cyclo-oxygenase by 12-HPETE the product of human platelet lipoxygenase. Bioch. Biophys. Res. Gommun. 25: 1273-1280 (1979)

18.  Bordia A., Verna S.K., Metha I.K., Andrews A.M.: Comparative effect of vitamin C, ampla juice and ampla pulp in blood lipids, platelet aggregation and experimental atheroma in rabbit aorta. Indian Heart J. 37: 179-182 (1985)

19.  Bordia A., Verma S.K.: Effect of vitamin C on platelet adhesiveness and platelet aggregation in coronary artery disease, Clin. Cardiol. 8: 522-554 (1985)

20.  Motley C., Connor H.D., Mason R.P.: [17O]Oxygen hyperfine structure for the hydroxyl and superoxide radical adducts of the spin traps BMPO, PBN and 4-POBN. Biophys. Res. Commun. 141: 622-628 (1986)

21.  Mondonneau-Parini I., Harpey C.: Effect of trimetazidine on membrane damage induced by oxygen free radicals in human cells. Br. J. Clin. Pharmacol. 20: 148-151 (1985)

22.  Guarnier C., Muscari C.: Antioxyradical properties of trimetazidine. Res. Cummun. Chem. Pathol. Pharmacol. 64: 1135-1145 (1989)

23.  Niki E.: Antioxidants in relation to lipid peroxidation. Chem. Phys. Lipids 44: 227-232 (1987)

24: Till U., Bosia A., Loche W., Spangerderg P., Pescarmona G.P.: Role of glutathione in platelet function. Folia Haematol (Leipzig) 115: 415-419 (1988)

25.  Matsuda S., Ikeda Y., Aok M., Toyama K., Watanabe K., Ando Y.: Role of reduced glutathione in platelet function. Thromb. Haemost. 42: 1324-1331 (1979)

26.  Chamulitrat W., Mason R.P.: Lipid peroxyl radical inter-mediates in the peroxidatiun of pollyunsaturated fatty acids by lipoxygenase. J. Biol. Chem. 264: 20968-20973 (1989)

27.  Connor D.H., Feisher V., Mason R.P.: Search for oxygen-centered radicals in the lipoxygenase-linoleic acid system. Biochem. Biophys. Res. Commun. 14: 614-621 (1986)

28.  Nelson J.M., Seitz S.P., Cowling R.A.: Enzyme-bound pentadienyl and peroxyl radicals in purple lipoxygenase. Biochemistry 29: 6897-6903 (1990)

29.  Nelson J.M., Batt D.G., Thompson J.S., Wright S.W.: Reduction of the enzyme active site iron by potent inhibitors. J. Biol Chem. 266: 8225-8229 (1991)

30.  Kemal C., Flamberg P.L., Krupinski-Olsen R., Shorter A.L.: Reductive inactivation of soybean lipoxygenase-1 by catechols. A possible mechanism for regulation of lipoxygenase activity. Biochemistry 26: 7064-7072 (1987)

31.  Cadenas E., Sies H: Detecting singlet oxygen by low-level chemiluminescence. In: CRC Handbook of Methods for Oxygen Radical Research (Greenwald R.A., ed.), pp. 197- 201, CRC Press, Florida, 1985

Relative Papers

Online ISSN 1011-6575

Άρθρα Δημοσιευμένα σε αυτό το Περιοδικό Καταχωρούνται στα:

Articles published in this Journal are Indexed or Abstracted in: • Chemical Abstracts • Elsevier’s Bibliographic Databases: Scopus, EMBASE, EMBiology, Elsevier BIOBASE SCImago Journal and Country Rank Factor

Συντακτικη Επιτροπή-Editorial Board

 

 

 

 

Bookmark the permalink.

Comments are closed.