Title | Sodium butyrate: a deacetylase inhibitor with potential antineoplastic effect in monotherapy or in combination | |
Authors | S. Massouridou1, H. Frangou1 and E.-N. Emmanouil-Nikoloussi2
1. Department of General Biology, Medical School and 2. Laboratory of Histology-Embryology and Anthropology, Aristotle University, Thessaloniki, Hellas |
|
Citation | Massouridou, S., Frangou, H., Emmanouil-Nikoloussi, E.-N.: Sodium butyrate: a deacetylase inhibitor with potential antineoplastic effect in monotherapy or in combination, Epitheorese Klin. Farmakol. Farmakokinet. 23(3): 125-130 (2009) | |
Publication Date | Accepted for publication (Final Version): July 1, 2009 | |
Full Text Language | English | |
Order – Buy | Ηλεκτρονική Μορφή: pdf (10 €) – Digital Type: pdf (10 €)
pharmakonpress[at]pharmakonpress[.]gr |
|
Keywords | Sodium butyrate, NaBu, apoptosis, anticancer drug, cytotoxic agents, anticancer drug, plasminogen, histone deacetylase inhibitors, histone modification. | |
Other Terms | review article | |
Summary | Sodium butyrate (NaBu) a naturally occurring short-chain fatty acid that is byproduct of carbohydrate metabolism in the gut, is one of the most widely studied histone deacetylase inhibitors HDIs (Histone Deacetylase Inhibitors). NaBu induces cell cycle arrest, differentiation, and apoptosis in some human tumor cell lines. HDIs are emerging as a promising new class of chemotherapeutic agents. HDIs, are in evidence as a potential new class of antineoplastic agents because they are able to promote or enhance a variety of different anticancer mechanisms, including apoptosis, cell cycle arrest and cellular differentiation. HDIs function by inhibiting histone deacetylases, resulting in the accumulation of acetylated histones, in turn leading to an increase in transcriptionally active chromatin. They reactivate gene expression of dormant tumour suppressor genes such as CDKN1A (p21) and modulates the expression of a large number of genes. Beside their direct anti-tumor activity HDIs also enhance the cytotoxic effects of some therapeutic regimens like ionizing radiation, chemotherapy and recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Therefore, the use of HDIs in association with classical chemotherapeutic drugs or in combination with DNA demethylating agents could be a promising treatment alternative. | |
References | 1. Roth S.Y., Dean A., Simpson R., T.: Yeast alpha 2 repressor positions nucleosomes in TRP1/ARS1 chromatin. Mol. Cell. Biol. 10: 2247-2260 (1990)
2. Smith M.M.: Histone structure and function. Curr. Opin. Cell Biol. 3: 429-437 (1991) 3. Verdone L., Agricola E., Caserta M., Mauro E., Di.: Histone acetylation in gene regulation, Brief Funct. Genomic proteomic 5: 209-221 (2006) 4. Mellor J.: dynamic nucleosomes and gene transcription. Trends Genet. 22: 320-329 (2006) 5. Kang J., Chen J. Shi Y., Jia J., Wang Z.; Histone hypoacetylation is involved in 1,10-phenantroline-Cu2+-induced human hepatoma cell apoptosis. J. Biol. Inorg. Chem. 10: 190-198 (2005) 6. Dey P.: Chromatin remodeling, cancer and chemotherapy. Curr. Med. Chem. 13: 2909-2329 (2006) 7. Kang S.K., Cha S.H., Jeon H.G.: Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells. Stem Cells Dev. 15: 165-174 (2006) 8. Chen J., Changsheng D., Kang J., Wang J.: Cu2+ is reuired for pyrrolidine dithiocarbamate to inhibit histone acetylation and induce human leukemia cell apoptosis. Chemico-Biological Interactions 171: 26-36 (2008) 9. Kouraklis G. Theocharis S. Histone deacetylase inhibitors: a novel target of anticancer therapy (review). Oncol. Rep. 15: 489-494 (2006) 10. Pazin M.J., Kadonapa J.T.: What’s up and down with histone deacetylation and transcription? Cell 89: 325-328 (1997) 11. Gregory R.H., Horz W.: A transient histone hyperacetylation signal marks nucleosomes for remodeling at the PHO8 promoter in vivo. Mol. Cell. 7: 529-536 (2001) 12. Kim Y., K., Han J., W., Woo Y., N., Chun J., K., Yoo J., Y., Cho E., J., Hong S., Lee H., Y., Lee Y., W., Lee H.,W.: Expression of p21 (WAF1/Cip1) through Sp1 sites by histone deacetylase inhibitor apicidin requires PI 3-kinase-PKC epsilon signaling pathway. Oncogene 22: 6023-6031 (2003) 13. Kim Y., K., Choi H., Y., Kim N., H., Lee W., Seo D., W., Kang D.,W., Lee H., Y., Han J.,W.: Histone deacetylase inhibitor apicidin induces cyclin E expression through Sp1 sites. Biochem. Biophys. Res. Commun. 342: 1168-1173 (2006) 14. Koyama Y., Adachi M., Sekiya M., Takekawa M., Imai K.: Histone deacetylase inhibitors suppress IL-2-mediated gene expression prior to induction of apoptosis. Blood 96: 1490-1495 (2000) 15. Kim S.-N., Choi H.-Y., Kim Y., K.; Regulation of Adipocyte differentiation by Histone Deacetylase Inhibitors. Arch. Pharm. Res. 32: 535-541 (2009). 16. Han L., Zhong Y., Huang B., Han L., Pan L., Xu X, Wang x., Huang B., Lu J.: Sodium butyrate activates erythroid-specific 5-aminolevulinate synthase gene through Sp1 elements at ist promoter. Blood Cells Mol Dis. 41: 148-153 (2008) 17. Manthos A., Economou L., Massouridou H., Kotsis A., Foroglou Ch.: Utrastructural and biochemical approach of NaB impact on rat regenerating liver. Scientific Annals of the Faculty of Medicine, Aristotle University of Thessaloniki, Greece 26(2): 9-15 (1999). 18. Frangou-Massourides H., Economou L., Kotsis A., Manthos A., Foroglou Ch.: Proteolytic activity and differentiation induced by NaB in regenerating rat liver. Scientific Annals of the Faculty of Medicine, Aristotle University of Thessaloniki, Greece 30(2): 17-20 (2003) 19. Frangou-Massourides H., Kotsis A.: Proteolytic activity and differentiation induced by sodium butyrate in rat intestinal epithelial cells with the presence of euglobulin. Biochemical and Biophysical Society of the 48th Scientific Conference 12-13 December 1998, Athens 20. Frangou-Massourides H., Kotsis A., Kyriakidis D.A.: Proteolytic activity and differentiation induced by Sodium butyrate in regenerating rat liver in the presence of euglobulin. Proceedings of the 50th Scientific Conference of the Hellenic Society of Biochemistry and Molecular Biology, Athens, 15-16 January 1999. Biochemistry and Molecular Biology Newsletter 45: 66-67 (1999) 21. Frangou-Massourides H., Gourtsas K., Kotsis A.: The effect of sodium butyrate (NaBu) on the inorganic pyrophosphatase (PPiase) activity on rat intestinal and spleen tissues in apoptotic conditions. Scientific Annals of the Faculty of Medicine, Aristotle University of Thessaloniki, Greece 28(2): 33-38 (2001). 22. Shields J.M., Christy R.J., Yang V.W.: Identification and characterization of a gene encoding a gut-enriched Krüppel-like factor expressed during growth arrest. J. Biol. Chem. 271: 20009-20017 (1996) 23. Chen Z.-Y., Rex S., Tseng C.-C.: Krüpper-like factor 4 is transactivated by butyrate in colon cancer cells. J. Nutr. 134: 792-798 (2004) 24. Heider U., Kaiser M., Sterz J., et al.: Histone deacetylase inhibitors reduce VEGF production and induce growth suppression and apoptosis in human mantle cell lymphoma. Eur. J. Haematol. 76: 42-50 (2006) 25. Rosato R.R., Grant S.: Histone deacetylase inhibitors in cancer therapy. Cancer Biol. Ther. 2: 30-37 (2003) 26. Chen Z., Clark S., Birkeland M., et al.: Induction and superinduction of growth arrest and DNA damage gene 45 (GADD45) alpha and beta messenger RNAs by histone deacetylase inhibitors trichostatin A (TSA) and butyrate in SW620 human colon carcinoma cells. Cancer Lett. 188: 127-140 (2002) 27. Takai N., Desmond J.C., Kumagai T., et al.: Histone deacetylase inhibitors have a profound antigrowth activity in endometrial cancer cells. Clin. Cancer Res. 10: 1141-1149 (2004) 28. Sealy L., Chalkly R.: Comparative study on highly metabolically active histone acetylation. Biochim. Biophys. Acta 561: 248-260 (1979) 29. El-Houseini M.E., Amer I.R.: Effect of Differentiating Agents on Interferon-γ (INF-γ) Level in Leukemia Cells Propagated Ex-Vivo. J. Egypt. Nat. Cancer Inst. 18: 283-291 (2006) 30. Mohan C., Lee G.M.: Calnexin overexpression sensitizes recombinant CHO cells to apoptosis induced by sodium butyrate treatment. Cell Stress Chaperones 14(1): 49-60 (2009) 31. Kim Y.-H., Park J.-W., Lee J.-Y., Knon T.K.: Sodium butyrate sensitizes TRAIL-mediated apoptosis by induction of transcription from the DR5 gene promote through Sp1 sites in colon cancer cells. Carcinogenesis 25: 1813-1820 (2004) 32. Louis M., Rosato R.R., Brault L., Osbild S., Battaglia E., Yang X.H., Grant S., Bagrel D.: The histone deacetylase inhibitor sodium butyrate induces breast cancer cell apoptosis through diverse cytotoxic actions including glutathione depletion and oxidative stress. Int. J. Oncol. 25: 1701-1711 (2004) 33. Saunders N., Dicker A., Popa C., Jones S., Dahler A.: Histone deacetylase inhibitors as potential anti-skin cancer agents. Cancer Res. 59: 399-404 (1999) 34. Krupitza G., Harant H., Dittrich E., Szekeres T., Huber H., Dittrich C.: Sodium butyrate inhibits c-myc splicing and interferes with signal transduction in ovarian carcinoma cells. Carcinogenesis 6: 1199-1205 (1995) 35. Friend C., Zajac-Kaye M., Holland J.G., Pogo B.G.: Depletion of sodium butyrate from the culture medium of Frind erythroleukemia cells undergoing differentiation. Cancer Res. 47: 378-382 (1987) 36. dos Santos M.P., Schwartsmann G., Roesler R., Brunetto A.L, Abujamra A.L.: Sodium butyrate enhances the cytotoxic effect of antineoplastic drugs in human lymphoblastic T-cells. Leuk. Res 33: 218-221 (2008). www.sciencedirect.com. 37. Lu R., Wang X., Sun D.,F., Tian X., Q., Zhao S., L., Chen Y., X., Fang J., Y.: Folic acid and Sodium butyrate prevent tumorigenesis in a mouse model of colorectal cancer. Epigenetics 3: 330-335 (2008). 38. Richon V.M., Sandhoff T.W., Rifkind R.A., Marks P.A.: Histone deacetylase inhibitor selectively induces p21WAP1 expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci. USA 97: 10014-10019 (2000) 39. Marks P.A., Dokmanovic M.: Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert. Opin. Investing. Drugs 14: 1497-1511 (2005) 40. Butler L.M., Agus D.B., Scher H.I., Higgins B., Rose A., Cordon-Cardo C., Thaler H.T., Rifkind R.A., Marks P.A., Richon V.M.: Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res. 60: 5165-5170 (2000) 41. Liu T., Kuljaca S., Tee A., Marshall G.M.: Histone deacetylase inhibitors; multifunctional anticancer agents. Cancer Treat. Rev. 32: 157-165 (2006) 42. He H., Lehming N.: Global effects of histone modifications, Brief Funct. Genomic. Proteomic 2: 234-243 (2003) 43. Kruh J.: Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol. Cell. Biochem. 42: 65-82 (1982) 44. Heerdt B.G., Houston M.A., Augenlicht L.H.: Shortchain fatty acid-initiated cell cycle arrest and apoptosis of colonic epithelial cells is linked to mitochondrial function. Cell Growth Differ. 8: 523-532 (1997) 45. Wang D., Wang Z., Tian B., Li X., Li S., Tian Y.: Two hour exposure to sodium butyrate sensitizes bladder cancer to anticancer drugs. Int. J. Urol. 15: 435-441 (2008) 46. Munshi A., Kurland J.F., Nishikawa T., et al.: Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin. Cancer Res. 11: 4912-4922 (2005) |
|
Relative Papers |
Online ISSN 1011-6575
Άρθρα Δημοσιευμένα σε αυτό το Περιοδικό Καταχωρούνται στα:
- Chemical Abstracts
- Elsevier’s Bibliographic Databases: Scopus, EMBASE, EMBiology, Elsevier BIOBASE SCImago Journal and Country Rank Factor
Articles published in this Journal are Indexed or Abstracted in: • Chemical Abstracts • Elsevier’s Bibliographic Databases: Scopus, EMBASE, EMBiology, Elsevier BIOBASE SCImago Journal and Country Rank Factor
Συντακτικη Επιτροπή-Editorial Board
ΕΤΗΣΙΑ ΣΥΝΔΡΟΜΗ 2009 – ANNUAL SUBSCRIPTION 2009 | |
Γλώσσα Πλήρους Κειμένου – Full Text Language | Αγγλικά – English |
Παραγγελία – Αγορά – Order – Buy | Ηλεκτρονική Μορφή: pdf (70 €) – Digital Type: pdf (70 €)
pharmakonpress[at]pharmakonpress[.]gr |
Έντυπη Μορφή (70 € + έξοδα αποστολής) – Printed Type (70 € + shipping)
pharmakonpress[at]pharmakonpress[.]gr |