cAMP Down-Regulates α_{2C} -Adrenergic Receptor at the Transcriptional Level in HepG2 Cells A. Lymperopoulos¹, S. Schaak², D. Charitonidou¹, C. Cayla², C. Denis², H. Paris² and C. Flordellis¹ - 1. Department of Pharmacology, School of Medicine, University of Patras, 261 10 Rio Patras, Greece - 2. INSERM U 388, Institut L. Bugnard, CHU Rangneil, 31403 Toulouse, France ## AIM The α₂-adrenergic receptors (α₂-ARs) mediate the effects of epinephrine and nor-epinephrine into the cell. They are members of the G-protein coupled receptors superfamily and their stimulation leads to inhibition of adenylate cyclase and decrease of cAMP levels. The human α2-ARs exist as three pharmacological subtypes, α_{2A_1} α_{2B} and α_{2C}. Studies of the α_{2C}-AR have been hampered by the lack of a cellular system natively expressing this subtype. The HepG2 hepatocarcinoma cell-line was recently found to natively express this subtype and studies in this cell-line have shown that long-term agonist treatment results in down-regulation of α_{2C} -AR in these cells, due to increased receptor protein degradation. Based on this finding, the aim of this study was to investigate the heterologous regulation of the α_{2C}-adrenergic receptor (α_{2C}-AR) by cAMP in HepG2 cells. # MATERIALS AND METHODS HepG2 cells were cultured in DMEM under standard conditions or subjected to treatment with different modulators (forskolin, 8-br-cAMP etc.). Levels of α_{2C} -AR were determined by ligand binding assays with [3 H]MK912 (α_{2} -antagonist) on membranes prepared from cells submitted to different treatments. Steady state levels of $\alpha_{2\text{C}}$ -AR mRNA were determined by RNase protection assays. Measurements of luciferase activity, after cell transfection with reporter gene constructs, were carried out to determine the \emph{cis} acting elements of the $\alpha_{2\text{C}}$ -AR promoter necessary to confer sensitivity to the cAMP effect. To characterize the transacting factors that mediate the effect of cAMP, gel retardation experiments were carried out, as described. #### **RESULTS** Exposure to forskolin or analogs of cAMP resulted in a significant reduction of $\alpha_{2C}\text{-}AR$ number in a dose-dependent manner. This reduction of receptor density is not due to an increased rate of receptor degradation, but is the result of a decrease in the steady state amounts of α_{2C} -AR mRNA, which was found to be primarily due to decreased rate of $\alpha_{2C}\text{-}AR$ gene transcription. Based on these results, we have started to characterize the \emph{cis} and \emph{trans} acting elements involved in the repression of the α_{2C} -AR gene transcription by cAMP. Transfection experiments with reporter gene constructs containing different fragments of the 5'-flanking region of the α_{2C} -AR gene showed the existence of a \emph{cis} acting elements of the system of a \emph{cis} acting elements ment, within a 240 bp fragment of the promoter, which confers sensitivity to the cAMP effect. Although this region does not contain any consensus sequence, it includes a CRE-like element (TGCCATCA). Initial results from gel-retardation experiments indicate that there is a rather specific time-dependent and forskolin-activated transcription factor(s) binding to this region and that the CRE-like element is not necessary for this binding. ## CONCLUSIONS cAMP down-regulates the α_{2C} -adrenoceptor in HepG2 cells by decreasing the rate of transcription of the α_{2C} -AR gene. It appears that cAMP exerts this effect by inducing binding of nuclear factors to the α_{2C} -AR gene promoter in a time-dependent manner. These findings bring novel insight into the mechanisms employed by cAMP in the down-regulation of the α_{2C} -AR.