REVIEW OF CLINICAL PHARMACOLOGY AND PHARMACOKINETICS INTERNATIONAL EDITION 24: 127 (2010) ©PHARMAKON-Press

Activation of the p75 Neurotrophin Receptor through Conformational Rearrangement of Disulphide-linked Receptor Dimers

Ioannis Charalampopoulos^{1,7,8}, Marcal Vilar^{1,7,8}, Rajappa S. Kenchappa^{2,8}, Anastasia Simi A.^{1,8}, Mark Bothwell³, Phillipe I.H. Bastiaens⁴, Peter J.Verveer⁴, Wilma J. Friedman⁵, Giampietro Schiavo⁶, Bruce D. Carter², Carlos F. Ibáñez¹

¹Division of Molecular Neurobiology, Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden; ²Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; ³University of Washington, Seattle, WA 98195-8056, USA; ⁴Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany; ⁵Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA; ⁶Molecular NeuroPathobiology Laboratory, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK; ⁷Present addresses: Department of Pharmacology, Faculty of Medicine, University of Crete, Greece (I.C.) and Centro Nacional de Investigaciones Oncologicas, Madrid, Spain (M.V.). ⁸Equal first authors

Ligand-mediated receptor dimerization has emerged as a universal mechanism of growth factor receptor activation. Neurotrophins interact with dimers of the p75 neurotrophin receptor (p75^{NTR}), but the mechanism of receptor activation has remained elusive. Here, we show that p75^{NTR} forms disulphide-linked dimers independently of neurotrophin binding through the highly conserved Cys²⁵⁷ in its transmembrane domain. Mutation of Cys²⁵⁷ abolished neurotrophin-dependent receptor activity but did not affect downstream signaling by the p75^{NTR}/NgR/Lingo-1 complex in response to MAG, indicating the existence of distinct, ligand-specific activation mechanisms for p75^{NTR}. FRET experiments revealed a close association of p75^{NTR} intracellular domains that was transiently disrupted by conformational changes induced upon NGF binding. Although mutation of Cys²⁵⁷ did not alter the oligomeric state of p75^{NTR}, the mutant receptor was no longer able to propagate conformational changes to the cytoplasmic domain upon ligand binding.

In addition, we also show that cross-linking of p75^{NTR} dimers by cysteine-scanning mutagenesis results in constitutive, ligand-independent activity in several pathways that are normally engaged upon neurotrophin stimulation of native receptors. The activity profiles of different disulfide-crosslinked p75^{NTR} mutants were similar but not identical, suggesting that different configurations of p75^{NTR} dimers might be endowed with different functions.

Together, these results indicate that dimeric mutants of p75^{NTR} functionally resemble neurotrophin bound, not neurotrophin-free, receptors, support formation or stabilization of receptor dimers and oligomers as the mechanism by which neurotrophins activate p75^{NTR}, and reveal a genetic approach to generate gain-of-function receptor variants with distinct functional profiles.