Τόμος 35 (2017) – Τεύχος 2 – Άρθρο 2 – Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής – Ελληνική Έκδοση – Volume 35 (2017) – Issue 2 – Article 2 – Epitheorese Klinikes Farmakologias και Farmakokinetikes – Greek Edition

Τίτλος – Title
H επίδραση της Ταυρίνης στο Μεταβολικό Σύνδρομο: Θεραπευτικές παρεμβάσεις

Taurine effects on Metabolic Syndrome: Therapeutic approaches

Συγγραφέας – Author

Ιωάννα Γκρεκ

Αναπληρώτρια Καθηγήτρια, Τμήμα Αισθητικής & Κοσμητολογίας, Σχολή Επαγγελμάτων Υγείας & Πρόνοιας (ΣΕΥΠ), Τεχνολογικό Εκπαιδευτικό Ίδρυμα (ΤΕΙ)  Αθήνας, Αθήνα, Ελλάς

Ioanna Grech

Associate Professor, Department of Aesthetics and Cosmetology, Faculty of Health and Caring Professions, Technological Educational Institution (TEI) of Athens, Athens, Hellas

Παραπομπή – Citation
Ιωάννα Γκρεκ: H επίδραση της Ταυρίνης στο Μεταβολικό Σύνδρομο: Θεραπευτικές παρεμβάσεις, Επιθεώρηση Κλιν. Φαρμακολ. Φαρμακοκινητ. 35: 55-68 (2017)
Ioanna Grech: Taurine effects on Metabolic Syndrome: Therapeutic approaches, Epitheorese Klin. Farmakol. Farmakokinet. 35: 55-68 (2017)
Ημερομηνία Δημοσιευσης – Publication Date
8 Φεβρουαρίου 2017 – 2017-02-8
Γλώσσα Πλήρους Κειμένου –
Full Text Language

Ελληνικά – Greek

Παραγγελία – Αγορά –
Order – Buy
Ηλεκτρονική Μορφή: pdf (15 €)
Digital Type: pdf (15 €)
pharmakonpress[at]pharmakonpress[.]gr
Λέξεις κλειδιά – Keywords
Μεταβολικό σύνδρομο, Σακχαρώδης Διαβήτης, Ταυρίνη
Metabolic syndrome, Diabetes mellitus, Taurine
Λοιποί Όροι – Other Terms

Άρθρο

Article

Περίληψη – Summary
Το Μεταβολικό Σύνδρομο (ΜΣ), ένα σύμπλεγμα από παράγοντες κινδύνου για την δημιουργία Σακχαρώδη Διαβήτη (ΣΔ) και Καρδιαγγειακών παθήσεων, αποτελεί ένα πολύ σοβαρό πρόβλημα για την Δημόσια Υγεία. Ένας αριθμός μελετών έχουν αποδείξει ότι η Ταυρίνη έχει αποτελεσματική δράση κατά του ΜΣ, το οποίο περιλαμβάνει τη μείωση των τριγλυκεριδίων για την πρόληψη της παχυσαρκίας, την βελτίωση  στην αντίσταση στην ινσουλίνη και την ρύθμιση του μεταβολισμού της γλυκόζης, την μείωση της χοληστερόλης (ιδιαίτερα μειώνοντας την VLDL και LDL χοληστερόλη και αυξάνει την HDL-χοληστερόλη) για την πρόληψη της υπερχοληστερολαιμίας επαγόμενη από τους διαιτητικούς παράγοντες και την ρύθμιση του συστήματος ρενίνης-αγγειοτενσίνης-αλδοστερόνης και της καλλικρεΐνης-κινίνης για να μειώσει την Αρτηριακή Υπέρταση (ΑΥ). Η ανασκόπηση αυτή συνοψίζει τα δεδομένα in vitro, των ζώων και των περιορισμένων ανθρώπινων μελετών των ευεργετικών αποτελεσμάτων της Ταυρίνης στην παχυσαρκία, την δυσλιπιδαιμία και τον ΣΔ και εξετάζει τους πιθανούς μεταβολικούς και μοριακούς μηχανισμούς της πρόληψης του ΜΣ με την χρήση της Ταυρίνης

Metabolic syndrome predisposes to diabetes mellitus and cardiovascular disease, being an important issue for public health. A sufficient number of studies indicate that Taurine has a beneficial role against metabolic syndrome establishment by lowering oxidation of lipids, improving insulin resistance, regulating reninangiotensin network, and lowering arterial pressure. This review summarizes the in vitro and in vivo research findings of beneficial abilities of taurine in obesity, dislipidemia, and diabetes mellitus. Also an investigation of possible molecular pathways of preventing metabolic syndrome with the use of taurine is included.

Αναφορές – References1
  1. K. G. Alberti, P. Zimmet and J. Shaw, IDF Epidemiology Task Force Consensus Group, The metabolic syndrome-a new worldwide definition, Lancet, 2005, 366, 1059–1062.
  2. K. G. Alberti and P. Zimmet, Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation, Diabetic Med., 1998, 15(7), 539–553.
  3. Executive summary of the Third Report of The National Cholesterol Education Program (NCEP), Expert Panel on detection, evaluation, and treatment of high blood chole-sterol in adults (Adult Treatment Panel III), JAMA, J. Am. Med. Assoc., 2001, 285, 2486–2497.
  4. B. Balkau and M. A. Charles, Comment on the provisional report from the WHO consultation, Diabetic Med., 1999, 16(5), 442–443.
  5. K. G. Alberti, P. Zimmet and J. Shaw, Metabolic syndrome-a new world-wide definition. A Consensus Statement from the International Diabetes Federation, Diabetic Med., 2006, 23(5), 469–480.
  6. S. Mottillo, K. B. Filion, J. Genest, L. Joseph, L. Pilote, P. Poirier, S. Rinfret, E. L. Schiffrin and M. J. Eisenberg, The metabolic syndrome and cardiovascular risk a syste-matic review and meta-analysis, J. Am. Coll. Cardiol., 2010, 56(14), 1113–1132.
  7. M. Stern, K. Williams and C. Gonzalez-Villalpando, Does the metabolic syndrome improve identification of indi-viduals at risk of type 2 diabetes and/or cardiovascular disease?, Diabetes Care, 2004, 27(11), 2676–2681.
  8. Janusz Marcinkiewicz, Ewa Kontny: ‘’Taurine and inflammatory diseases’’, Amino Acids. 2014; 46(1): 7–20.
  9. N. Raiha, D. Rassin, K. Heinonen and G. E. Gaull, Milk protein quality and quantity: Biochemical and growth effects in low birth weight infants (LBWI), Pediatr. Res., 1975, 9, 370.
  10. J. A. Sturman, Taurine in development, Physiol. Rev., 1993, 73, 119–147.
  11. C. E. Wright, H. H. Tallan and Y. Y. Lin, Taurine: bio-logical update, Annu. Rev. Biochem., 1986, 55, 427–453.
  12. J. H. Thurston, R. E. Hauhart and J. A. Dirgo, Taurine: A role in osmotic regulation of mammalian brain and poss-ible clinical significances, Life Sci., 1980, 26, 1561–1568.
  13. M. H. Pasantes, C. E. Wright and G. E. Gaull, Taurine pro-tection of lymphoblastoid cells from iron-ascorbate-induced damage, Biochem. Pharmacol., 1985, 34, 2205– 2207.
  14. S. W. Schaffer, C. J. Jong, K. C. Ramila and J. Azuma, Physiological roles of  taurine  in  heart  and  muscle, J. Biomed. Sci., 2010, 17(Suppl 1), S2.
  15. S. W. Schaffer, J. Azuma and M. Mozaffari, Role of anti-oxidant activity of taurine in diabetes, Can. J. Physiol. Pharmacol., 2009, 87(2), 91–99.
  16. N. Tsuboyama-Kasaoka, C. Shozawa, K. Sano, Y. Kamei, S. Kasaoka, Y. Hosokawa and O. Ezaki, Taurine (2-amino-ethanesulfonic acid) deficiency creates a vicious circle pro-moting obesity, Endocrinology, 2006, 147, 3276–3284.
  17. A. T. Nandhini, V. Thirunavukkarasu and C. V. Anuradha, Potential role of kinins in the effects of taurine in high-fructose-fed rats, Can. J. Physiol. Pharm., 2004, 82, 1–8.
  18. Y. Sato, E. Ogata and T. Fujita, Hypotensive action of taurine in DOCA-salt rats- involvement of sympathoadre-nal inhibition and endogenous opiate, Jpn. Circ. J., 1991, 55, 500–508.
  19. W. Chen, K. Suruga, N. Nishimura and T. Gouda, Com-parative regulation of major enzymes in bile acids bio-synthesis pathways by cholesterol, cholic acid and taurine in mice and rats, Life Sci., 2005, 77(7), 746–757.
  20. M. El-Batch, A. M. Hassan and H. A. Mahmoud, Taurine is more effective than melatonin on cytochrome P450 2E1 and some oxidative stress markers in streptozotocin-induced diabetic rats, J. Agric. Food Chem., 2011, 59, 4995– 5000.
  21. L. K. Gavrovskaya, O. V. Ryzhova, A. F. Safonova, A. K. Matveev and N. S. Sapronov, Protective effect of taurine on rats with experimental insulin-dependent diabetes mellitus, Bull. Exp. Biol. Med., 2008, 146, 226-228.
  22. M. Imae, T. Asano and S. Murakami, Potential role of taurine in the prevention of diabetes and metabolic syndrome, Amino Acids, 2014, 46(1), 81–88.
  23. S. Murakami, Taurine and atherosclerosis, Amino Acids, 2014, 46(1), 73–80.
  24. Y. Yamori, T. Taguchi, H. Mori and M. Mori, Low cardio-vascular risks in the middle aged males and females excreting greater 24-hour urinary taurine and magnesium in 41 WHO-CARDIAC study populations in the world, J. Biomed. Sci., 2010, 17(Suppl 1), S21.
  25. O. P. Wójcik, K. L. Koenig, A. Zeleniuch-Jacquotte, C. Pearte, M. Costa and Y. Chen, Serum taurine and risk of coronary heart disease: a prospective, nested case-control study, Eur. J. Nutr., 2013, 52(1), 169–178.
  26. M. Zhang, L. F. Bi, J. H. Fang, X. L. Su, G. L. Da, T. Kuwamori and S. Kagamimori, Beneficial effects of taurine on serum lipids in overweight or obese non-diabetic subjects, Amino Acids, 2004, 26(3), 267–271.
  27. M. Ishikawa, S. Arai, M. Takano, A. Hamada, K. Kunimasa and M. Mori, Taurine’s health influence on Japanese high school girls, J. Biomed. Sci., 2010, 17(Suppl 1), S47.
  28. F. T. Rosa, E. C. Freitas, R. Deminice, A. A. Jordão and J. S. Marchini, Oxidative stress and inflammation in obesity after taurine supplementation: a double-blind, placebo-controlled study, Eur. J. Nutr., 2014, 53(3), 823– 830.
  29. K. S. Kim, H. Oh da, J. Y. Kim, et al., Taurine ameliorates hyperglycemia and dyslipidemia by reducing insulin resistance and leptin level in Otsuka Long-Evans Toku-shima fatty (OLETF) rats with long-term diabetes, Exp. Mol. Med., 2012, 44(11), 665–673.
  30. J. S. You, X. Zhao, S. H. Kim and K. J. Chang, Positive cor-relation between serum taurine and adiponectin levels in high-fat diet-induced obesity rats, Adv. Exp. Med. Biol., 2013, 776, 105–111.
  31. Y. Arita, S. Kihara, N. Ouchi, M. Takahashi and K. Maeda, Paradoxical decrease of an adipose-specific protein, adipo-nectin, in obesity, Biochem. Biophys. Res. Commun., 1999, 257, 79–83.
  32. C.Weyer,T. Funahashi, S.  Tanaka, K.Hotta, Y. Matsuzawa, R.E. Pratley and P. A. Tataranni, Hypo-adiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia, J. Clin. Endocrinol. Metab., 2001, 86, 1930–1935.
  33. A. Serrano, F. J. Pavón, J. Suarez, P. Rivera, M. Vida, et al., Adiponectin promoter activator NP-1 reduces body weight and hepatic steatosis in  high-fat  diet-fed animals, Am. J. Physiol. Endocrinol. Metab., 2012, 302(7), E817–E830.
  34. T. R. Nardelli, R. A. Ribeiro, S. L. Balbo, E. C. Vanzela, E. M. Carneiro, et al., Taurine prevents fat deposition and ameliorates plasma lipid profile in monosodium gluta-mate-obese rats, Amino Acids, 2011, 41(4), 901–908.
  35. P. J. Cao, Y. J. Jin, M. E. Li, R. Zhou and M. Z. Yang, PGC-1α may associated with the anti-obesity effect of taurine on rats induced by arcuate nucleus lesion, Nutr. Neurosci., 2016, 19(2), 86–93.
  36. Y. Y. Chang, C. H. Chou, C. H. Chiu, K. T. Yang and Y. L. Lin, Preventive effects of taurine on development of hepatic steatosis induced by a high-fat/cholesterol dietary habit, J.  Agric. Food Chem., 2011, 59(1), 450–457.
  37. J. D. Horton, J. L. Goldstein and M. S. Brown, SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver, J. Clin. Invest., 2002,109(9), 1125–1131.
  38. I. Ikeda, R. Hamamoto, K. Uzu, K. Imaizumi, K. Nagao, T. Yanagita, Y. Suzuki, M. Kobayashi and T. Kakuda, Dietary gallate esters of tea catechins reduce deposition of visceral fat, hepatic triacylglycerol, and activities of hepatic enzymes related to fatty acid synthesis in rats, Biosci. Bio-technol. Biochem., 2005, 69(5), 1049–1053.
  39. L. K. Liu, F. P. Chou, Y. C. Chen, C. C. Chyau, H. H. Ho and C. J. Wang, Effects of mulberry (Morus alba L.) extracts on lipid homeostasis in vitro and in vivo, J. Agric. Food Chem., 2009, 57(16), 7605–7611.
  40. K. Matsuo, H. Arai, K. Muto, M. Fukaya, T. Sato, A. Mizuno, M. Sakuma, H. Yamanaka-Okumura, H. Sasaki, H. Yamamoto, Y. Taketani, T. Doi and E. Takeda, The anti- obesity effect of the palatinose-based formula inslow is likely due to an increase in the hepatic PPAR-alpha and adipocyte PPAR-gamma gene expressions, J. Clin. Biochem. Nutr., 2007, 40(3), 234–241.
  41. Y. S. Seo, J. H. Kim, N. Y. Jo, K. M. Choi, S. H. Baik, J. J. Park, J. S. Kim, K. S. Byun, Y. T. Bak, C. H. Lee, A. Kim and J. E. Yeon, PPAR agonist treatment is effective in a nonalcoholic fatty liver disease animal model by modulat-ing fatty-acid metabolic enzymes, J. Gastroenterol. Hepatol., 2008, 23(1), 102–109.
  42. N. Harada, C. Ninomiya, Y. Osako, M. Morishima, K. Mawatari, A. Takahashi and Y. Nakaya, Taurine alters respiratory gas exchange and nutrient metabolism in type 2 diabetic rats, Obes. Res., 2004, 12(7), 1077–1084.
  43. H. M. Kim, C. H. Do and D. H. Lee, Characterization of taurine as anti-obesity agent in C. elegans, J. Biomed. Sci., 2010, 17(Suppl 1), S33.
  44. K. Tsuji, T. Seki and H. Iwao, Cholesterol-lowering effects of taurine and sulfur-containing amino acids in serum and liver of rats, Sulfur Amino Acids, 1979, 2, 143–145.
  45. K. Sugiyama, A. Ohishi, Y. Ohnuma, et al., Comparison between the plasma cholesterol-lowering effects of glycine and taurine in fats fed on high-cholesterol diets, Agric. Biol. Chem., 1989, 53(6), 1647–1652.
  46. H. Yokogoshi, H. Mochizuki, K. Nanami, et al., Dietary taurine enhances cholesterol degradation and reduces serum and liver cholesterol concentrations in rats fed a high-cholesterol diet, J. Nutr., 1999, 129(9), 1705–1712.
  47. S. Murakami, Y. Kondo and T. Nagate, Effects of long-term treatment with taurine in mice fed a high-fat diet: improvement of cholesterol metabolism and vascular lipid accumulation by taurine, Adv. Exp. Med. Biol., 2000, 483, 177–186.
  48. H. O. El Mesallamy, E. El-Demerdash, L. N. Hammad, et al., Effect of taurine supplementation on hyperhomo-cysteinemia and markers of oxidative stress in high fruc-tose diet induced insulin resistance, Diabetol. Metab. Syndr., 2010, 2, 46–57.
  49. W. Chen, N. Nishimura, H. Oda, et al., The effect of taurine on cholesterol degradation and bile acids pool, Adv. Exp. Med. Biol., 2003, 526, 261–268.
  50. J. Y. L. Chiang, Regulation of bile acid synthesis, Front. Biosci., 1998, 3, 176–193.
  51. Z. R. Vlahcevic, W. M. Pandak and R. T. Stravit, Regulation of bile acid biosynthesis, Gastroenterol. Clin. N., 1999, 28, 1–25.
  52. A. Kibe, C. Wake, T. Kuramoto and T. Hoshita, Effect of dietary taurine on bile acid metabolism in guinea pigs, Lipids, 1980, 15(4), 224–229.
  53. H. Mochizuki, J. Takido, H. Oda, et al., Improving effect of dietary taurine on market hypercholesterolemia induced by a high-cholesterol diet in streptozotocin-induced diabetic rats, Biosci. Biotechnol. Biochem., 1999, 63(11), 1984–1987.
  54. M. H. Hoang, Y. Jia, H. J. Jun, et al., Taurine is a liver X receptor-α ligand and activates transcription of key genes in the reverse cholesterol transport without inducing hepatic lipogenesis, Mol. Nutr. Food Res., 2012, 56(6), 900– 911.
  55. N. V. Lam, W. Chen, K. Suruga, et al., Effects of taurine on mRNA levels of nuclear receptors and factors involved in cholesterol and bile acid homeostasis in mice, Adv. Exp. Med. Biol., 2006, 583, 193–202.
  56. N. Nishimura, C. Umeda, H. Oda and H. Yokogoshi, The effect of taurine on plasma cholesterol concentration in genetic type 2 diabetic GK rats, J. Nutr. Sci. Vitaminol., 2002, 48(6), 483–490.
  57. N. Nishimura, T. Yamamoto and T. Ota, Taurine feeding inhibits bile acid absorption from the ileum in rats fed a high cholesterol and high fat diet, Adv. Exp. Med. Biol., 2009, 643, 285–291.
  58. H. Campos, J. J. Granest Jr., E. Bilijievents, et al., Low density lipoprotein particle size and coronary artery disease, Arterioscler. Thromb., 1992, 12, 187–195.
  59. J. Coresh, P. O. Kwiteroviwich Jr., H. H. Smith and P. S. Bachorik, Association of plasma triglyceride concen-tration and LDL particle diameter, density and chemical composition with premature coronary artery disease in men and women, J. Lipid Res., 1993, 34, 1887–1897.
  60. S. Murakami, Y. Kondo, Y. Toda, H. Kitajima, K. Kameo, Sakono and N. Fukuda, Effect of taurine on cholesterol metabolism in hamsters: up-regulation of low density lipoprotein (LDL) receptor by taurine, Life Sci., 2002, 70, 2355–2366.
  61. R. J. Huxtable, H. E. Laird and S. E. Lippincott, The trans-port of taurine in the heart and rapid depletion of tissue taurine content by guanidinoethyl sulfonate, J. Pharmacol. Exp. Ther., 1979, 211(3), 465–471.
  62. W. Chen, K. Matuda, N. Nishimura and H. Yokogoshi, The effect of taurine on cholesterol degradation in mice fed a high-cholesterol diet, Life Sci., 2004, 74, 1889–1898.
  63. X. Li, F. Catalina, S. M. Grundy and S. Patel, Method to measure apolipoprotein B-48 and B-100 secretion rates in an individual mouse: evidence for a very rapid turnover of VLDL and preferential removal of B-48-relative to B-100-containing lipoproteins, J. Lipid Res., 1996, 37, 210–220.
  64. T. Yanagita, S. Y. Han, Y. Hu, K. Nagao, H. Kitajima and Murakami, Taurine reduces the secretion of apolipo-protein B100 and lipids in HepG2 cells, Lipids Health Dis., 2008, 7, 38–43.
  65. W. G. Lapson, J. H. Kramer and S. W. Schaffer, Poten-tiation of the actions of insulin by taurine, Can. J. Physiol. Pharmacol., 1983, 61(5), 457–463.
  66. E. P. Elizarova and L. V. Nedosugova, First experiments in taurine Administration for diabetes mellitus-the effect on erythrocyte membranes, Adv. Exp. Med. Biol., 1996, 403, 583–588.
  67. K. Winiarska, K. Szymanski, P. Gorniak, et al., Hypoglycae-mic, antioxidative and nephroprotective effects of taurine in alloxan diabetic rabbits, Biochimie, 2009, 91(2), 261– 270.
  68. Y. W. Hsu, S. M. Yeh, Y. Y. Chen, et al., Protective effects of taurine against alloxan-induced diabetic cataracts and refraction changes in New Zealand White rabbits, Exp. Eye Res., 2012, 103, 71–77.
  69. J. Das, V. Vasan and P. C. Sil, Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis, Toxicol. Appl. Pharmacol., 2012, 258(2), 296–308.
  70. N. Alvarado-Vasquez, P. Zamudio, E. Ceron and B. Vanda, Effect of glycine in streptozotoc ininduced diabetic rats, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 2003, 134(4), 521–527.
  71. M. A. Di Leo, S. A. Santini, N. G. Silveri, et al., Long-term taurine supplementation reduces mortality rate in strepto-zotocin-induced diabetic rats, Amino Acids, 2004, 27(2), 187–191.
  72. G. G. Wang, W. Li, X. H. Lu, et al., Taurine attenuates oxi-dative stress and alleviates cardiac failure in type I dia-betic rats, Croat Med. J., 2013, 54, 171–179.
  73. A. T. Nandhini, V. Thirunavukkarasu and C. V. Anuradha, Stimulation of glucose utilization and inhibition of protein glycation and AGE products by taurine, Acta Physiol. Scand., 2004, 181(3), 297–303.
  74. M. Merheb, R. T. Daher, M. Nasrallah, et al., Taurine intestinal absorption and renal excretion test in diabetic patients: a pilot study, Diabetes Care, 2007, 30(10), 2652– 2654.
  75. A. D. Copeland, C. E. Hendrich and S. P. Porterfield, Dis-tribution of free amino acids in streptozotocin-induced diabetic pregnant rats, their placentae and fetuses, Horm. Metab. Res., 1990, 22(2), 65–70.
  76. F. Franconi, M. A. Di Leo, F. Bennardini, et al., Is taurine beneficial in reducing risk factors for diabetes mellitus?, Neurochem. Res., 2004, 29(1), 143–150.
  77. F. Franconi, A. Loizzo, G. Ghirlanda, et al., Taurine sup-plementation in diabetes mellitus, Curr. Opin. Clin. Nutr. Metab. Care, 2006, 9(1), 32–36.
  78. L. Aerts and F. A. Van Assche, Taurine and taurine-deficiency in the perinatal period, J. Perinat. Med., 2002, 30(4), 281–286.
  79. G. Seghieri, F. Tesi, L. Bianchi, A. Loizzo, et al., Taurine in women with a history of gestational diabetes, Diabetes Res. Clin. Pract., 2007, 76(2), 187–192.
  80. S. Parvez, H. Tabassum, B. D. Banerjee and S. Raisuddin, Taurine prevents tamoxifen-induced mitochondrial oxi-dative damage in mice, Basic Clin. Pharmacol. Toxicol., 2008, 102(4), 382–387.
  81. J. Das and P. C. Sil, Taurine ameliorates alloxan-induced diabetic renal iinjury, oxidative stress-related signaling pathways and apoptosis in rats, Amino Acids, 2012, 43(4), 1509–1523.
  82. C. J. Jong, J. Azuma and S. Schaffer, Mechanism under-lying the antioxidant activity of taurine: prevention of mitochondrial oxidant production, Amino Acids, 2012, 42(6), 2223–2232.
  83. A. Gonzalez-Chavez, S. Elizondo-Argueta, G. Gutiérrez-Reyes, et al., Pathophysiological implications between chronic inflammation and the development of diabetes and obesity, Circulation, 2011, 79(2), 209–216.
  84. M. Andel, J. Polák, P. Kraml, P. Dlouhý and V. Stich, Chronic mild inflammation links obesity, metabolic syn-drome, atherosclerosis and diabetes, Vnitr. Lek., 2009, 55(7–8), 659–665.
  85. G. L. King, The role of inflammatory cytokines in diabetes and its complications, J. Periodontol., 2008, 79(8 Suppl), 1527–1534.
  86. E. Park, J. Jia, M. R. Quinn, et al., Taurine chloramines inhibits lymphocyte proliferation and decreases cytokine production in activated human leukocytes, Clin. Immunol., 2002, 102(2), 179–184.
  87. E. Park, M. R. Quinn, C. E. Wright and G. Schuller-Levis, Taurine chloramine inhibits the synthesis of nitric oxide and the release of tumor necrosis factor in activated RAW 264.7 cells, J. Leukoc. Biol., 1993, 54(2), 119–124.
  88. Y. Liu and M. R. Quinn, Chemokine production by rat alveolar macrophages is inhibited by taurine chloramines, Immunol. Lett., 2002, 80(1), 27–32.
  89. M. Barua, Y. Liu and M. R. Quinn, Taurine chloramine inhibits inducible nitric oxide synthase and TNF-alpha gene expression in activated alveolar macrophages: decreased

 

NF-kappaB activation and IkappaB kinase activity, J. Immunol., 2001, 167(4), 2275–2281.

  1. M. Li, C. M. Reynolds, D. M. Sloboda, et al. Effects of Taurine Supplementation on Hepatic Markers of Inflam-mation and Lipid Metabolism in Mothers and Offspring in the Setting of Maternal Obesity, PLoS One, 2013, 8(10), e76961.
  2. S. Lin, S. Hirai, Y. Yamaguchi, et al., Taurine improves obesity-induced inflammatory responses and modulates the unbalanced phenotype of adipose tissue macro-phages, Mol. Nutr. Food Res., 2013, 57(12), 2155–2165.
  3. K. A. Harford, C. M. Reynolds, F. C. McGillicuddy, et al., Fats, inflammation and insulin resistance: insights to the role of macrophage and T-cell accumulation in adipose tissue, Proc. Nutr. Soc., 2011, 70(4), 408–417.
  4. H. Tokunaga, Y. Yoneda and K. Kuriyama, Protective action of taurine against streptozotocin-induced hyper-glycemia, Biochem. Pharmacol., 1979, 28(18), 2807–2811.
  5. N. Zhang, H. Fang, H. Zhang, et al., The protective effect of taurine on islet β-cell in streptozotocin- induced dia-betic rat, Chin. J. Diabetes, 1998, 6(1), 30–33.
  6. K. J. Chang and W. Kwon, Immunohistochemical locali-zation of insulin in pancreatic beta-cells of taurine- sup-plemented or taurine-depleted diabetic rats, Adv. Exp. Med. Biol., 2000, 483, 579–587.
  7. H. R. Yu, N. Zhang, Y. L. Dong, Q. Zhou and Q. X. Zhou, Effects of taurine on the change of apoptosis induced by IL-1β, TNF–α and  IFN-γ  in  rat  pancreatic  islet  cells, Chin. J. Pathophysiol., 2007, 23(6), 1172–1175.
  8. E. Arany, B. Strutt, P. Romanus, et al., Taurine supplement in early life altered islet morphology, decreased insulitis and delayed the onset of diabetes in non-obese diabetic mice, Diabetologia, 2004, 47, 1831–1837.
  9. A. El Idrissi, L. Boukarrou and W. L’Amoreaux, Taurine supplementation and pancreatic remodeling, Adv. Exp. Med. Biol., 2009, 643, 353–358.
  10. W. J. L’Amoreaux, C. Cuttitta, A. Santora, et al., Taurine regulates insulin release from pancreatic beta cell lines, J. Biomed. Sci., 2010, 17(Suppl 1), S11.
  11. A. I. Oprescu, G. Bikopoulos, A. Naassan, et al., Free fatty acid-induced reduction in glucose-stimulated insulin secretion: evidence for a role of oxidative stress in vitro and in vivo, Diabetes, 2007, 56(12), 2927–2937.
  12. R. A. Ribeiro, M. L. Bonfleur, A. G. Amaral, et al., Taurine supplementation enhances nutrient-induced insulin secretion in pancreatic mice islets, Diabetes Metab. Res. Rev., 2009, 25(4), 370–379.
  13. P. Maechler, Novel regulation of insulin secretion: the role of mitochondria, Curr. Opin. Investig. Drugs, 2003, 4(10), 1166–1172.
  14. D. Tricarico, M. Barbieri and D. C. Camerino, Taurine blocks ATP-sensitive potassium channels of rat skeletal muscle fibres interfering with the sulphonylurea receptor, Br. J. Pharmacol., 2000, 130, 827–834.
  15. E. M. Carneiro, M. Q. Latorraca, E. Araujo, et al., Taurine supplementation modulates glucose homeostasis and islet function, J. Nutr. Biochem., 2009, 20(7), 503–511.
  16. S. Shao, Z. Fang, X. Yu, et al., Transcription factors involved in glucose-stimulated insulin secretion of pan-creatic beta cells, Biochem. Biophys. Res. Commun., 2009, 384(4), 401–404.
  17. H. Kaneto, T. A. Matsuoka, T. Miyatsuka, et al., PDX-1 functions as a master factor in the pancreas, Front. Biosci., 2008, 13, 6406–6420.
  18. C. V. Anuradha and S. D. Balakrishnan, Taurine attenu-ates hypertension and improves insulin sensitivity in the fructose-fed rat, an animal model of insulin resistance, Can. J. Physiol. Pharmacol., 1999, 77(10), 749–754.
  19. Y. Nakaya, A. Minami, N. Harada, et al., Taurine improves insulin sensitivity in The Otsuka Long-Evans Tokushima Fattyrat, a model of spontaneous Type 2 diabetes, Am. J. Clin. Nutr., 2000, 71(1), 54–58.
  20. C. A. Haber, T. K. Lam, Z. Yu, et al., N-acetylcysteine and taurine prevent hyperglycemia- induced insulin resistance in vivo: possible role of oxidative stress, Am. J. Physiol. Endocrinol. Metab., 2003, 285(4), E744–E753.
  21. C. Xiao, A. Giacca and G. F. Lewis, Oral taurine but not N-acetylcysteine ameliorates NEFA-induced impairment in insulin sensitivity and beta cell function in obese and overweight, non-diabetic men, Diabetologia, 2008, 51(1), 139–146.
  22. V.Aguirre, E. D.Werner, J. Giraud, Y. H. Lee, S. E.  Shoelson and M. F. White, Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action, J. Biol. Chem., 2002, 277(2), 1531–1537.
  23. W. Chen, J. X. Guo and P. Chang, The effect of taurine on cholesterol metabolism, Mol. Nutr. Food Res., 2012, 56(6), 681–690.
  24. M. Düfer, K. Hörth, R. Wagner, et al., Bile acids acutely stimulate insulin secretion of mouse β-cells via farnesoid X receptor activation and K(ATP) channel inhibition, Dia-betes, 2012, 61(6), 1479–1489.
  25. R. Cao, Z. X. Cronk, W. Zha, et al., Bile acids regulate hepatic gluconeogenic genes and farnesoid X receptor via G(alpha)i-protein-coupled receptors and the AKT pathway, J. Lipid Res., 2010, 51(8), 2234–2244.
  26. T. Wu, M. J. Bound, S. D. Standfield, et al., Effects of taurocholic acid on glycemic, glucagon-like peptide-1, and insulin responses to small intestinal glucose infusion in healthy humans, J. Clin. Endocrinol. Metab., 2013, 98(4), E718–E722.
  27. M. Kars, L. Yang, M. F. Gregor, et al., Tauroursodeoxy-cholic Acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women, Dia-betes, 2010, 59(8), 1899–1905.
  28. Wen Chen, Junxia Guo, Yanzhen Zhang and Jing Zhang, The beneficial effects of taurine in preventing metabolic syndrome, Food Funct., 2016, 7, 1849-1863.

Online ISSN 1011-6575

Άρθρα Δημοσιευμένα σε αυτό το Περιοδικό Καταχωρούνται στα:
Chemical Abstracts

Elsevier’s Bibliographic Databases: Scopus, EMBASE, EMBiology, Elsevier BIOBASE
SCImago Journal and Country Rank Factor

Articles published in this Journal are Indexed or Abstracted in:
• Chemical Abstracts
• Elsevier’s Bibliographic Databases: Scopus, EMBASE, EMBiology, Elsevier BIOBASE
SCImago Journal and Country Rank Factor

Άρθρα Δημοσιευμένα στην Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Ελληνική Έκδοση
Articles Published in Epitheorese Klinikes Farmakologias και Farmakokinetikes-Greek Edition

Συντακτικη Επιτροπή-Editorial Board

ΕΤΗΣΙΑ ΣΥΝΔΡΟΜΗ – ANNUAL SUBSCRIPTION
Γλώσσα Πλήρους Κειμένου –
Full Text Language
Ελληνικά – Greek
Παραγγελία – Αγορά –
Order – Buy
pharmakonpress[at]pharmakonpress[.]gr
pharmakonpress[at]pharmakonpress[.]gr

 

Προσθέστε στους σελιδοδείκτες το μόνιμο σύνδεσμο.

Τα σχόλια είναι απενεργοποιημένα.