Τόμος 29 (2011) – Τεύχος 3 – Άρθρο 2 – Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Ελληνική Έκδοση – Volume 29 (2011) – Issue 3 – Article 2 – Epitheorese Klinikes Farmakologias και Farmakokinetikes-Greek Edition

Τίτλος – Title

Παθοφυσιολογία της Διαβητικής Νεφροπάθειας

The Pathogenesis of Diabetic Nephropathy

Συγγραφέας – Author

Iωάννης Τσαβδαρίδης και Μαρία Μυρωνίδου-Τζουβελέκη

Α’ Εργαστήριο Φαρμακολογίας, Ιατρική σχολή, Αριστοτέλειο Πανεπιστήμιο, Θεσσαλονίκη, Ελλάς

Ioannis Tsavdaridis and Maria Mironidou-Tzouveleki

A’ Laboratory of Pharmacology, Medical School, Aristotle University, Thessaloniki, Greece

Παραπομπή – Citation

Τσαβδαρίδης, Ι.,Μυρωνίδου-Τζουβελέκη, Μ.: Παθοφυσιολογία της Διαβητικής Νεφροπάθειας, Επιθεώρηση Κλιν. Φαρμακολ. Φαρμακοκινητ. 29: 181-189 (2011)

Tsavdaridis, I., Mironidou-Tzouveleki, M.: The Pathogenesis of Diabetic Nephropathy, Epitheorese Klin. Farmakol. Farmakokinet. 29: 181-189 (2011)

Ημερομηνία Δημοσιευσης – Publication Date
1 Νοεμβρίου 2011 – 2011-11-01
Γλώσσα Πλήρους Κειμένου –
Full Text Language

Ελληνικά – Greek

Παραγγελία – Αγορά –
Order – Buy
Ηλεκτρονική Μορφή: pdf (15 €)
Digital Type: pdf (15 €)
pharmakonpress[at]pharmakonpress[.]gr
Λέξεις κλειδιά – Keywords
Λευκωματινουρία, διαβητική νεφροπάθεια, μη ενζυματική γλυκοζυλίωση, οδός πολυολών, γλυκοτοξικότητα, μετατρεπτικός αυξητικός παράγοντας, αγγειακός-ενδοθηλιακός αυξητικός παράγοντας, πρωτεϊνική κινάση C, προρενίνη, σύστημα ρενίνης-αγγειοτασίνης-αλδοστερόνης
Albuminuria, diabetic nephropathy, non enzymatic glycosylation, polyol metabolic pathway, glucotoxicity, transforming growth factor, vascular endothelial growth factor, protein kinase C, prorenin, renin-angiotensin-aldosterone system
Λοιποί Όροι – Other Terms

Άρθρο

Article

Περίληψη – Summary

Η Διαβητική νεφροπάθεια αποτελεί μία από τις γνωστές επιπλοκές του σακχαρώδη διαβήτη (Σ.Δ.) και το πιο συχνό αίτιο νεφρικής ανεπάρκειας τελικού σταδίου που οδηγεί σε τεχνητή εξωνεφρική κάθαρση. Η ποσότητα της λευκωματίνης των ούρων χρησιμοποιείται ως κριτήριο ύπαρξης της νόσου, όμως η παρουσία μικρολευκωματινουρίας είναι ένδειξη μικροαγγειοπάθειας, παρά προβλεπτικός παράγοντας επιδείνωσης της νεφρικής λειτουργίας. Η νόσος έχει διαφορετική εξέλιξη στο Σ.Δ. τύπου 1 και 2. Στην παθογένεια της νόσου εμπλέκονται ποικίλοι μηχανισμοί χωρίς να θεωρείται ότι κάποιος από αυτούς είναι ο σημαντικότερος. Η μη ενζυματική γλυκοζυλίωση, η οδός των πολυολών και της εξοζαμίνης, η γλυκοτοξικότητα, η αυξημένη υδροστατική πίεση στο σπείραμα και κυρίως το σύστημα ρενίνης-αγγειοτασίνης-αλδοστερόνης θεωρείται ότι εμπλέκονται στην παθοφυσιολογία της νόσου. Πρόσφατα, η έρευνα επεκτείνεται σε μόρια στόχους-κυτταροκίνες που φαίνεται ότι διαμεσολαβούν στην εκδήλωση της διαβητικής νεφροπάθειας. Εκτιμάται ότι πολύ σύντομα μπορεί να υπάρξουν νέα φάρμακα για τη θεραπεία της νόσου.

Diabetic nephropathy is one of the known complications of diabetes and the most common cause of end stage renal disease leading to dialysis. The amount of albumin in urine is used as a criterion for the disease, but the presence of microalbuminuria is a sign of microangiopathy, rather than a predictor of deterioration of renal function. The disease has a different way in diabetes type 1 and 2. In the pathogenesis of the disease, a variety of mechanisms are involved without one of them being regarded as more important. The non-enzymatic glycosylation, the polyols and hexosaminine pathway, the glucotoxicity, the increased hydrostatic pressure in the glomeruli and especially the renin-angiotensin-aldosterone system are considered to be involved in the pathophysiology of the disease. Recent research expands to target molecules-cytokines that seem to mediate the onset of diabetic nephropathy. It is estimated that there may be new drugs for the treatment of disease very soon.

Αναφορές – References
1. Krolewski A.S., Warram J.H.: Epidemiology of late complications of diabetes; A basis for the development and evaluation of preventive programs In: (Kahn C.R., Weir G.C., King G.L., Moses A.C., Smith R.J., Jacobson A.M., eds) Diabetes Mellitus. 14th ed., pp. 795-808. Lippincott Williams & Wilkins Joslin’s, 2004

2. Gross J.L., De Azevedo M.J., Silveiro S.P., et al.: Diabetic Nephropathy: Diagnosis, Prevention, and Treatment. Diabetes Care 28: 176-188 (2005)

3. US Renal Data System: USRDS 2010 Annual Data Report: Atlas of End-Stage Renal Disease in the United States. Available at: http://www.usrds.org/2010/pdf/v2_02.pdf

4. Chaturvedi N., Bandinelli S., Mangili R., Penno G., Rottiers R.E., Fuller J.H.: Microalbuminuria in type 1 dia-betes: rates, risk factors and glycemic threshold. Kidney Int. 60: 219-227 (2001)

5. Hovind P., Tarnow L., Rossing P., et al.: Predictors of the development of microalbuminuria and macroalbuminuria in patients with type 1 diabetes: inception cohort study. BMJ 328: 1105-1108 (2004)

6. Wong T.Y., Shankar A., Klein R., Klein B.E.: Retinal vessel diameters and the incidence of gross proteinuria and renal insufficiency in people with type 1 diabetes. Diabetes 53: 179-184 (2004)

7. Giorgino F., Laviola L., Cavallo Perin P., et al.: Factors associated with progression to macroalbuminuria in micro-albuminuric Type 1 diabetic patients: the EURODIAB Prospective Complications Study. Diabetologia 47: 1020-1028 (2004)

8. Adler A.I., Stevens R.J., Manley S.E., Bilous R.W., Cull C.A., Holman R.R.: Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 63: 225-232 (2003)

9. Murussi M., Baglio P., Gross J.L., Silveiro S.P.: Risk factors for microalbuminuria and macroalbuminuria in type 2 diabetic patients: a 9-year follow-up study. Diabetes Care 25: 1101-1103 (2002)

10. Forsblom C.M., Groop P.H., Ekstrand A., et al.: Predictors of progression from normoalbuminuria to microalbuminuria in NIDDM. Diabetes Care 21: 1932-1938 (1998)

11. Bryson C.L., Ross H.J., Boyko E.J., Young B.A.: Racial and ethnic variations in albuminuria in the US Third National Health and Nutrition Examination Survey (NHANES III) population: associations with diabetes and level of CKD. Am. J. Kidney Dis. 48: 720-726 (2006)

12. Gruden G., Viberti. G.: Pathogenesis of Diabetic Nephropathy. In: (Kahn C.R., Weir G.C., King G.L., Moses A.C., Smith R.J., Jacobson A.M., eds) Diabetes Mellitus. 14th ed., pp. 853-866, Lippincott Williams & Wilkins, Joslin’s, 2004

13. Dronavalli S., Duka I., Bakris G.L.: The pathogenesis of diabetic nephropathy. Nat. Clin. Pract. Endocrinol. Metab. 4: 444-452 (2008)

14. Cooper M.E.: Pathogenesis, prevention, and treatment of diabetic nephropathy. Lancet 352: 213-219 (1998)

15. Porte D.J., Schwartz M.W.: Diabetes complications: why is glucose potentially toxic? Science 272: 699-700 (1996)

16. Makita Z., Radoff S., Rayfield E.J., et al.: Advanced glycosylation end products in patients with diabetic nephropathy. N. Engl. J. Med. 325: 836-842 (1991)

17. Singh A.K., Mo W., Dunea G., Arruda J.A.: Effect of glycated proteins on the matrix of glomerular epithelial cells. J. Am. Soc. Nephrol. 9: 802-810 (1998)

18. Raj D.S., Choudhury D., Welbourne T.C., Levi M.: Advanced glycation end products: a Nephrologist’s perspective. Am. J. Kidney Dis. 35: 365-380 (2000)

19. Vlassara H., Striker L.J., Teichberg S., Fuh H., Li Y.M., Steffes M.: Advanced glycation end products induce glomerular sclerosis and albuminuria in normal rats. Proc. Natl. Acad. Sci. USA 91: 11704-11708 (1994)

20. Soulis-Liparota T., Cooper M., Papazoglou D., Clarke B., Jerums G.: Retardation by aminoguanidine of development of albuminuria, mesangial expansion, and tissue fluorescence in streptozocin-induced diabetic rat. Diabetes 40: 1328-1334 (1991)

21. Goldfarb S., Ziyadeh F.N., Kern E.F., Simmons D.A.: Effects of polyol-pathway inhibition and dietary myo-inositol on glomerular hemodynamic function in experimental diabetes mellitus in rats. Diabetes 40: 465-471 (1991)

22. Passariello N., Sepe J., Marrazzo G., et al.: Effect of aldose reductase inhibitor (tolrestat) on urinary albumin excretion rate and glomerular filtration rate in IDDM subjects with nephropathy. Diabetes Care 16: 789-795 (1993)

23. McCaleb M.L., Sredy J., Millen J., Ackerman D.M., Dvornik D.: Prevention of urinary albumin excretion in 6 month streptozocin-diabetic rats with the aldose reductase inhibitor tolrestat. J. Diabet. Complications 2:16-18 (1988)

24. McCaleb M.L., McKean M.L., Hohman T.C., Robison W.G.: Intervention with the aldose reductase inhibitor, tolrestat, in renal and retinal lesions of streptozotocin-diabetic rats. Diabetologia 34: 695-701 (1991)

25. Burt D.J., Gruden G., Thomas S.M., et al.: P38 mito-gen-activated protein kinase mediates hexosamine-induced TGFbeta1 mRNA expression in human mesangial cells. Diabetologia 46: 531-537 (2003)

26. Kolm-Litty V., Sauer U., Nerlich A., Lehmann R., Schleicher E.D.: High glucose-induced transforming growth factor beta1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J. Clin. Invest. 101: 160-169 (1998)

27. Ayo S.H., Radnik R.A., Glass W.F., et al.: Increased extracellular matrix synthesis and mRNA in mesangial cells grown in high-glucose medium. Am. J. Physiol. 260(2 Pt 2): 185-191 (1991)

28. Heilig C.W., Liu Y., England R.L., et al.: D-glucose stimulates mesangial cell GLUT1 expression and basal and IGF-I-sensitive glucose uptake in rat mesangial cells: implications for diabetic nephropathy. Diabetes 46: 1030-1039 (1997)

29. Mogensen C.E., Christensen C.K.: Blood pressure changes and renal function in incipient and overt diabetic nephropathy. Hypertension 7: II64-73 (1985)

30. Riser B.L., Cortes P., Zhao X., Bernstein J., Dumler F., Narins R.G.: Intraglomerular pressure and mesangial stretching stimulate extracellular matrix formation in the rat. J. Clin. Invest. 90: 1932-1943 (1992)

31. Gruden G., Zonca S., Hayward A., et al.: Mechanical stretch-induced fibronectin and transforming growth factor-beta1 production in human mesangial cells is p38 mitogen-activated protein kinase-dependent. Diabetes 49: 655-661 (2000)

32. Gnudi L., Viberti G., Raij L., et al.: GLUT-1 overexpression: Link between hemodynamic and metabolic factors in glomerular injury? Hypertension 42: 19-24 (2003)

33. Border W.A, Noble N.A.: Transforming growth factor beta in tissue fibrosis. N. Engl. J. Med. 331: 1286-1292 (1994)

34. Ziyadeh F.N, Han D.C.: Involvement of transforming growth factor-beta and its receptors in the pathogenesis of diabetic nephrology. Kidney Int. Suppl. 60: S7-11 (1997)

35. Ziyadeh F.N., Hoffman B.B., Han D.C., et al.: Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc. Natl. Acad. Sci. USA 97: 8015-8020 (2000)

36. Inoki K., Haneda M., Maeda S., Koya D., Kikkawa R.: TGF-beta 1 stimulates glucose uptake by enhancing GLUT1 expression in mesangial cells. Kidney Int. 55: 1704-1712 (1999)

37. Benigni A., Zoja C., Corna D., et al.: Add-on anti-TGF-beta antibody to ACE inhibitor arrests progressive diabetic nephropathy in the rat. J. Am. Soc. Nephrol. 14: 1816-1824 (2003)

38. Riser B.L., Cortes P., Heilig C., et al.: Cyclic stretching force selectively up-regulates transforming growth factor-beta isoforms in cultured rat mesangial cells. Am. J. Pathol. 148: 1915-1923 (1996)

39. Ferrara N., Davis-Smyth T.: The biology of vascular endothelial growth factor. Endocr. Rev. 18: 4-25 (1997)

40. Kanesaki Y., Suzuki D., Uehara G., et al.: Vascular endothelial growth factor gene expression is correlated with glomerular neovascularization in human diabetic nephropathy. Am. J. Kidney Dis. 45: 288-294 (2005)

41. Kim N.H., Jung H.H., Cha D.R., Choi D.S.: Expression of vascular endothelial growth factor in response to high glucose in rat mesangial cells. J. Endocrinol. 155: 617-624 (2000)

42. Flyvbjerg A., Dagnaes-Hansen F., De Vriese A.S., Schrijvers B.F., Tilton R.G., Rasch R.: Amelioration of long-term renal changes in obese type 2 diabetic mice by a neutralizing vascular endothelial growth factor antibody. Diabetes 51: 3090-3094 (2002)

43. Eremina V., Cui S., Gerber H., et al.: Vascular endothelial growth factor a signaling in the podocyte-endothelial compartment is required for mesangial cell migration and survival. J. Am. Soc. Nephrol. 17: 724-735 (2006)

44. Mironidou-Tzouveleki M., Tsartsalis S., Tomos C.: Vascular endothelial growth factor (VEGF) in the pathogenesis of diabetic nephropathy of type 1 diabetes mellitus. Curr. Drug Targets 21: 107-14 (2011)

45. Bortoloso E., Del Prete D., Dalla Vestra M., et al.: Quantitave and qualitative changes in vascular endothelial growth factor gene expression in glomeruli of patients with type 2 diabetes. Eur. J. Endocrinol. 150: 799-807 (2004)

46. Goldschmeding R., Aten J., Ito Y., Blom I., Rabelink T., Weening J.J.: Connective tissue growth factor: just another factor in renal fibrosis? Nephrol. Dial. Transplant. 15: 296-299 (2000)

47. Wahab N.A., Yevdokimova N., Weston B.S., et al.: Role of connective tissue growth factor in the pathogenesis of diabetic nephropathy. Biochem. J. 359: 77-87 (2001)

48. Flyvbjerg A.: Putative pathophysiological role of growth factors and cytokines in experimental diabetic kidney disease. Diabetologia 43: 1205-1223 (2000)

49. Giordano M., DeFronzo R.A.: Acute effect of human recombinant insulin-like growth factor I on renal function in humans. Nephron 71: 10-15 (1995)

50. Koya D., King G.L.: Protein kinase C activation and the development of diabetic complications. Diabetes 47: 859-866 (1998)

51. Haneda M., Kikkawa R., Sugimoto T., et al.: Abnormalities in protein kinase C and MAP kinase cascade in mesangial cells cultured under high glucose conditions. J. Diabetes Complications 9: 246-248 (1995)

52. Ishii H., Jirousek M.R., Koya D., et al.: Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science 5262: 728-731 (1996)

53. Koya D., Haneda M., Nakagawa H., et al.: Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J. 14: 439-447 (2000)

54. Seger R., Krebs E.G.: The MAPK signaling cascade. FASEB J. 9: 726-735 (1995)

55. Haneda M., Araki S., Togawa M., Sugimoto T., Isono M., Kikkawa R.: Mitogen-activated protein kinase cascade is activated in glomeruli of diabetic rats and glomerular mesangial cells cultured under high glucose conditions. Diabetes 46: 847-853 (1997)

56. Navarro-González J.F., Mora-Fernández C.: The role of inflammatory cytokines in diabetic nephropathy. J. Am. Soc. Nephrol. 19: 433-442 (2008)

57. DiPetrillo K., Coutermarsh B., Gesek F.A.: Urinary tumor necrosis factor contributes to sodium retention and renal hypertrophy during diabetes. Am. J. Physiol. Renal Physiol. 284: F113-121 (2003)

58. Imig J.D.: Eicosanoids and renal vascular function in diseases. Clin. Sci. (Lond) 111: 21-34 (2006)

59. Hao C.M., Breyer M.D.: Physiologic and pathophysiologic roles of lipid mediators in the kidney. Kidney Int. 70: 1105-1115 (2007)

60. Vasavada N., Agarwal R.: Role of oxidative stress in diabetic nephropathy. Adv. Chronic Kidney Dis. 12: 146-54 (2005)

61. Benigni A., Gagliardini E., Tomasoni S., et al.: Selective impairment of gene expression and assembly of nephrin in human diabetic nephropathy. Kidney Int. 65: 2193-2200 (2004)

62. Langham R.G., Kelly D.J., Cox A.J., et al.: Proteinuria and the expression of the podocyte slit diaphragm protein, nephrin, in diabetic nephropathy: effects of angiotensin converting enzyme inhibition. Diabetologia 45: 1572-1576 (2002)

63. Doublier S., Salvidio G., Lupia E. et al.: Nephrin expression is reduced in human diabetic nephropathy: evidence for a distinct role for glycated albumin and angiotensin II. Diabetes 52: 1023-1030 (2003)

64. Wilson D.M., Luetscher J.A.: Plasma prorenin activity and complications in children with insulin-dependent diabetes mellitus. N. Engl. J. Med. 323: 1101-1106 (1990)

65. Daneman D., Crompton C.H., Balfe J.W., et al.: Plasma prorenin as an early marker of nephropathy in diabetic (IDDM) adolescents. Kidney Int. 46: 1154-1159 (1994)

66. Takahashi H., Ichihara A., Kaneshiro Y., et al.: Regression of nephropathy developed in diabetes by (Pro)renin receptor blockade. J. Am. Soc. Nephrol. 18: 2054-2061 (2007)

67. Εθνικό συνταγολόγιο: ΕΟΦ, σελ 109-112, Αθήνα, 2007

68. Ruggenenti P., Cravedi P., Remuzzi G.: The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nat. Rev. Nephrol. 6: 319-330 (2010)

69. Wolf G., Ziyadeh F.N.: The role of angiotensin II in diabetic nephropathy: emphasis on nonhemodynamic mechanisms. Am. J. Kidney Dis. 29: 153-63 (1997)

70. Leehey D.J., Singh A.K., Alavi N., Singh R.: Role of angiotensin II in diabetic nephropathy. Kidney Int. Suppl. 77: S93-98 (2000)

71. Kaschina E., Unger T.: Angiotensin AT1/AT2 receptors: regulation, signalling and function. Blood Press. 12: 70-88 (2003)

72. Morgan T.: Renin, angiotensin, sodium and organ damage. Hypertens. Res. 26: 349-354 (2003)

73. Cooper M.E.: The role of the renin-angiotensin-aldosterone system in diabetes and its vascular complications. Am. J. Hypertens. 17(11Pt2): 16S-20S (2004)

74. Carey R.M., Siragy H.M.: Newly recognized components of the renin-angiotensin system: potential roles in cardiovascular and renal regulation. Endocr. Rev. 24: 261-271 (2003)

75. Reudelhuber T.L.: The continuing saga of the AT2 receptor: a case of the good, the bad, and the innocuous. Hypertension 46: 1261-1262 (2005)

76. Kagami S., Border W.A., Miller D.E., Noble N.A.: Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells. J. Clin. Invest. 93: 2431-2437 (1994)

77. Lapinski R., Perico N., Remuzzi A., Sangalli F., Benigni A., Remuzzi G.: Angiotensin II modulates glomerular capillary permselectivity in rat isolated perfused kidney. J. Am. Soc. Nephrol. 7: 653-760 (1996)

Online ISSN 1011-6575

Άρθρα Δημοσιευμένα σε αυτό το Περιοδικό Καταχωρούνται στα:
Chemical Abstracts

Elsevier’s Bibliographic Databases: Scopus, EMBASE, EMBiology, Elsevier BIOBASE
SCImago Journal and Country Rank Factor

Articles published in this Journal are Indexed or Abstracted in:
• Chemical Abstracts
• Elsevier’s Bibliographic Databases: Scopus, EMBASE, EMBiology, Elsevier BIOBASE
SCImago Journal and Country Rank Factor

Άρθρα Δημοσιευμένα στην Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Ελληνική Έκδοση
Articles Published in Epitheorese Klinikes Farmakologias και Farmakokinetikes-Greek Edition

Συντακτικη Επιτροπή-Editorial Board

ΕΤΗΣΙΑ ΣΥΝΔΡΟΜΗ – ANNUAL SUBSCRIPTION
Γλώσσα Πλήρους Κειμένου –
Full Text Language
Ελληνικά – Greek
Παραγγελία – Αγορά –
Order – Buy
pharmakonpress[at]pharmakonpress[.]gr
pharmakonpress[at]pharmakonpress[.]gr

 

Προσθέστε στους σελιδοδείκτες το μόνιμο σύνδεσμο.

Τα σχόλια είναι απενεργοποιημένα.