Τίτλος – Title
|
Μυοχαλαρωτικά Φάρμακα στην Αναισθησιολογία
|
|
Συγγραφέας – Author
|
Σταύρος Τ. Πλέσσας1, Χαράλαμπος Τ. Πλέσσας2, Αχιλλέας Μπενάκης3 1 Τμήμα Νοσηλευτικής, Πανεπιστήμιο Αθηνών, Αθήνα, Ελλάς 2 Τμήμα Επιστημονικής Πληροφόρησης του ΦΑΡΜΑΚΟΝ-Τύπος, Αθήνα, Ελλάς 3 Εργαστήριο Φαρμακολογίας, Ιατρική Σχολή Πανεπιστημίου Θεσσαλίας, Λάρισσα, Ελλάς Stavros T. Plessas1, Charalampos T. Plessas2, Achilles Benakis3 1 Department of Nursing, University of Athens, Athens, Greece 2 Pharmakon-Press Information Services, Athens, Greece 3 Department of Pharmacology, Medical School, University of Thessalia, Larissa, Greece |
|
Παραπομπή – Citation
|
Πλέσσας,Σ.Τ., Πλέσσας,Χ.Τ., Μπενάκης,Α. : Μυοχαλαρωτικά Φάρμακα στην Αναισθησιολογία, Επιθεώρηση Κλιν. Φαρμακολ. Φαρμακοκινητ. 17 : 177-197 (1999) Plessas,S.T., Plessas,C.T., Benakis,A. : Pharmacology of Skeletal Muscle Relaxants, Epitheorese Klin. Farmakol. Farmakokinet. 17: 177-197 (1999) |
|
Ημερομηνία Δημοσιευσης – Publication Date
|
– 2000 –
|
|
Γλώσσα Πλήρους Κειμένου –
Full Text Language |
Ελληνικά – Greek |
|
Παραγγελία – Αγορά –
Order – Buy |
Ηλεκτρονική Μορφή: pdf (15 €) –
Digital Type: pdf (15 €) pharmakonpress[at]pharmakonpress[.]gr |
|
Λέξεις κλειδιά – Keywords
|
Μυοχαλαρωτικά φάρμακα, μη εκπολωτικά, εκπολωτικά, χημεία, προέλευση, φυσικοχημικές ιδιότητες, φαρμακοδυναμική, σχέσεις δομής και δράσης, κλινική φαρμακοκινητική, αλληλεπιδράσεις φαρμάκων, παθολογικές καταστάσεις, ανεπιθύμητες δράσεις, αλκουρόνιο, ατρακούριο, cis-ατρακούριο, βεκουρόνιο, γαλλαμίνη, δοξακούριο, μιβακούριο, ORG 9487, πανκουρόνιο, πιπεκουρόνιο, ροκουρόνιο, σουκινυλοχολίνη, d-τουμποκουραρίνη Neuromuscular blocking agents, nondepolarising, depolarising, chemistry, sources, physicochemical properties, Pharmacodynamics, structure-activity relationships, clinical Pharmacokinetics, drug interactions, pathological conditions, alcuronium, atracurium, cis-atracurium, doxacurium, gallamine, mivacurium, ORG 9487, pancuronium, pipecuronium, rocuronium, succinylcholine, d-tubocurarine, vecuronium
|
|
Λοιποί Όροι – Other Terms
|
Άρθρο Article |
|
Περίληψη – Summary
|
– During the 16th century, European explorers found that the Indians along the Amazon and Orinoco Rivers were using an arrow poison, named curare, that produced death by skeletal paralysis. Curare is one of several different resinous substances obtained from extracts of South American trees including species of chondrodendron. The pharmacological active ingredient of curare used medically is the alkaloid d-tubocurarine. Muscle relaxation or paralysis results from an interruption in the pathways for nervous impulses between the nervous system and muscle. Most drugs may also exert a variable degree of prejunctional effect. Several drugs have as their major action the interruption of transmission of the nerve impulse at the skeletal neuromuscular junction (NMJ). The neuromuscular blocking drugs (NMB) are quaternary ammonium compounds. Positive charges at these sites in the molecules mimic the quaternary nitrogen atom of the transmitter ACh and are the principal reason for the attraction of these drugs to cholinergic receptors. All muscle relaxants contain two positive charges or at least two potential positive charges (except gallamine which has 3); these are separated by a bridging structure that is lipophilic, different for various series of muscle relaxants and is a major determinant of potency. The NMBs are classified either as nondepolarising (competitive blocking) agents, or as depolarising agents. Nondepolarising drugs are for the most part relatively bulky, rigid molecules (e.g., d-tubocurarine, the toxiferines, the benzylisoquinolines, the ammonium steroids such as pancuronium) and occupy one or both of the receptor sites and thus prevent depolarisation by denying ACh access to the receptors. These drugs can be antagonised by anticholinesterase agents such as neostigmine, which prevent breakdown of ACh so that more of it is present to compete with the relaxant drug. Depolarising NMBs (e.g., decamethonium, succinylcholine) generally have a more flexible structure that enables free bond rotation. Succinylcholine is the only one depolarising drug currently used; it acts by causing a prolonged depolarisation of the muscle end plate, making it unresponsive to ACh. Such a block is not antagonised by neostig-mine. Anticholinesterase drugs, in fact, prolong a succinylcholine block. All muscle relaxants are ionised and positively charged irrespective of the pH and thus poorly lipid soluble. Because of this they do not readily cross the bloodbrain barrier, cell membranes or placenta and are generally not actively metabolised by the liver, although some of the steroidal derivatives are an exception. The Pharmacokinetics of NMBs is described by 2- or 3-compartment models. The volume of distribution of these drugs is relatively small due to their poor lipid solubility. The pharmacokinetic behaviour of this class of agents is little influenced by age or anaesthetic agents; however, hepatic or renal disease may profoundly alter their excretion pattern, resulting in prolonged duration of neuromuscular blockade. For most of these agents, biotransformation plays an important role in their total elimination. Adverse side effects that may accompany the administration of succinylcholine include cardiac dysrhythmias, hyperkalemia, myalgia, myoglobinuria, increased intragastric pressure, increased intraocular pressure, increased intracranial pressure, and sustained skeletal muscle contractions. Drugs administered in the perioperative period, such as (a) volatile anaesthetics, (b) aminoglycoside antibiotics, (c) local anaesthetics, (d) cardiac antidysrhythmic drugs, (e) diuretics, and (f) magnesium, lithium and gaglionic-blocking drugs, may enhance the effects of nondepolarising NMBs at the NMJ. Changes unrelated to concurrent drug therapy, such as (a) hypotension, (b) acid-base alterations, (c) changes in serum potassium concentrations, (d) adrenocortical dysfunction, (e) thermal (burn) injury and allergic reactions, may also influence the characteristics of neuromuscular blockade produced by nondepolarising NMBs. Combinations of nondepolarising NMBs may produce a degree of neuromuscular blockade that is different from the degree that would be produced by either drug alone. In addition, gender may influence the duration of neuromuscular blockade produced by nondepolarising NMBs. Ageing may influence the duration of action of NMBs. In paediatric patients there are alterations in neuromuscular function across the age ranges: the neonatal NMJ is more sensitive than that of the adult, but pharmacokinetic factors often counterbalance this sensitivity and consequently, in many cases, the nondepolarising-blocking agents requirement in the neonate is similar to that of the adult. The onset of action is more rapid in infants than in children and that, in general, children require more NMB by weight than do infants or adult to obtain similar levels of paralysis. Children recover more rapidly than other age groups, although infants may recover more rapidly from drugs which are metabolised in the plasma. In elderly patients, the duration of action of nondepolarising NMBs is often prolonged, probably owing to decreased clearance of drugs by the liver and kidneys; as a result, the dose of NMBs should probably be reduced. Several diseases can diminish or augment the neuromuscular blockade produced by nondepolarising NMBs. The duration of effect and time to recovery are increased in patients with renal and hepatic failure, possibly due to reduced plasma cholinesterase concentrations. Myasthenia gravis markedly augments the neuromuscular blockade from these drugs. Pancuronium is the most commonly used long-acting nondepolarising neuromuscular blocking drug. Doxacurium and pipecuronium resemble puncuronium, but, unlike pancuronium, these drugs are devoid of cardiovascular side effects. d-tubocurarine, metocurine and gallamine are largely replaced in clinical practice with drugs possessing more efficient and predictable clearance mechanisms. The intermediate-acting nondepolarising neuromuscular drugs, atracurium, vecuronium, rocuronium and cisatracurium possess efficient clearance mechanisms that minimise the likelihood of significant cumulative effects with repeated injections or continuous infusions; these drugs are useful especially when tracheal intubation or skeletal muscle relaxation are needed for short operations, such as outpatient procedures. Mivacurium is the only clinically useful short-acting nondepolarising neuromuscular-blocking drug; ORG 9487 is more rapid in onset than mivacurium, but has a similar duration of action. |
|
Αναφορές – References
|
1. Schopfer C.: Myorelaxants. Epitheor. Klin. Farmakol. Farmakokinet. Greek Ed. 7: 131-155 (1989)
2. McIntyre A.R.: History of curare. In: Neuromuscular Blocking and Stimulating Agents. International Encyclopedia of Pharmacology and Therapeutics Vol. 1, Sect. 14 (Cheymol J., ed.), p. 187, Pergamon Press, Oxford, 1972 3. Bernard C. Analyse physiologique des proprietés des systèmes musculaires et nerveux au moyen du curare. C. R. Acad. Sci. 43: 825-829 (1856) 4. King H.: Curare alkaloids. I. Tubocurarine. J. Chem. Soc.: 1381 (1935) 5. Griffith H.R., Johnson G.E.: The use of curare in general anesthesia. Anesthesiology 3: 418-420 (1942) 6. Cullen S.C.: The use of curare for improvement of abdominal relaxation during cyclopropane anesthesia – report on 131 cases. Surgery 14: 2661 (1943) 7. Savarese J.J., Caldwell J.E., Lien C.A., Miller R.D.: Pharmacology of muscle relaxants and their antagonists. In: Anesthesia (Miller R.D., ed.), Volume 1, 5th ed., pp. 412-490, Churchill Livingstone, New York, 2000 8. Stoelting R.K. (Ed.): Pharmacology and Physiology in Anesthetic Practice. 3rd Edition, Lippincott-Raven, Philadelphia, 1999 9. Taylor P.: Agents acting at the neuromuscular junction and autonomic ganglia. In: Goodman and Gilman’s The Pharmacological Basis of Therapeutics (Hardman J.G., Limbird L.E., ed.), 9th Ed., pp. 177-197, McGraw-Hill, New York, 1996 10. McCaughey W., Mirakhur R.K.: Drugs in anaesthetic practice and analgesia. In: Avery’s Drug Treatment (Speight T.M., Holford N.H.G., eds), 4th Ed., pp. 451-514, Adis International, Sydney, 1997 11. Μυρωνίδου-Τζουβελέκη Μ.: Μυοχαλαρωτικά φάρμακα. Επιστ. Επετ. Τμημ. Ιατρ. Αριστ. Παν. Θεσ. 20: 119-144 (1993) 12. Hunter J.M.: New neuromuscular blocking drugs. N. Engl. J. Med. 332: 1691-1699 (1995) 13. Bevan D.R.: Newer neuromuscular blocking agents. Pharmacol. Toxicol. 74: 3-9 (1994) 14. Feldman S.A., Fauvel N.: Onset of neuromuscular block. In: Applied Neuromuscular Pharmacology (B.J. Pollard, ed.), pp. 69-84, Oxford University Press, Oxford, 1994 15. Δ. Βαρώνος: Ιατρική Φαρμακολογία, 5ç Έκδοση, σελ. 122-127, Εκδόσεις Γ.Κ. Παρισιάνος, Αθήνα, 1987 16. Pollard B.J.: Interactions involving relaxants. In: Applied Neuromuscular Pharmacology (B.J. Pollard, ed.), pp. 202-248, Oxford University Press, Oxford, 1994 17. Basta S.J.: Modulation of histamine release by neuromuscular blocking drugs. Curr. Opin. Anaesthesiol. 5: 512-566 (1992) 18. Watkins J.: Adverse reactions to neuromuscular blockers: frequency, investigation, and epidemiology. Acta Anaesthesiol. Scand. 102: 6-10 (1994) 19. Guay J., Grenier Y., Varin F.: Clinical pharmacokinetics of neuromuscular relaxants in pregnancy. Clin. Pharmacokinet. 34: 483-496 (1998) 20. Wright P.M., Caldwell J.E., Miller R.D.: Onset and duration of rocuronium and succinylcholine at the adductor pollicis and laryngeal addactor muscles in anesthetized humans. Anesthesiology 81: 1110-1115 (1995) 21. Agoston S., Vanderbron R.H.G., Wierda J.M.K.H.: Clinical Pharmacokinetics of neuromuscular blocking drugs. Clin. Pharmacokinet. 22: 94-115 (1992) 22. Kosterink J.G.W., Uges D.R.A., Kersten-Kleef U.W., Miller R.D.: Analytical methods for the determination of neuromuscular blocking agents in biological fluids in man. In: Monographs in Anaesthisiology – Muscle Relaxants (Agoston S., Bowman W.C., eds), pp. 421-456, Elsevier, Amsterdam-New York, 1990 23. Castagnoli K.P., Gruenke L.D., Miller R.D., Castagnoli Jr N.: Quantitative estimation of quaternary ammoniun neuromuscular blocking agents in serum by direct insertion probe chemical ionization mass spectrometry. Biomed. Environ. Mass Spectr. 13: 3327-3332 (1986) 24. Furuta T., Canfell P.C., Castagnoli K.P., Sharma M.L., Castagnoli Jr N., et al.: Quantitation of pancuronium, 3-desacetylpipecuronium, vecuronium, 33-desacetylvecutonium, pipecuronium and 3-desacetylpipecuronium in biological fluids by capillary gas chromatography using nitrogen-sensitive detection. J. Chrom. 427: 41-53 (1988) 25. Paanaker J.E., Thio J.M.S.L., Van den Wildenberg H.M., Kaspersen F.M.: Assays of vecuronium in plasma using solid-phase extraction, HPLC and post-column ion-pair extraction with fluorometric detection. J. Chrom. 421: 327-335 (1987) 26. Schopfer C., Pittet J.-F., Tassonyi E., Benakis A.: New technique using [125I]labeled rose bengal for the quantification in blood samples of pipecuronium bromide, a muscle relaxant drug. J. Lab. Comp. Radiopharm. 65: 547-556 (1991) 27. Dupuis J.Y., Martin R., Tétrault J.P.: Atracurium and vecuronium interaction with gentamicin and tobramycin. Canad. J. Anaesthesia 36: 407-411 (1989) 28. Snyder S.W., Cardwell M.S.: Neuromuscular blockade with magnesium sulfate and nifedipine. Am. J. Obstet. Gyn. 161: 35-36 (1989) 29. Jones R.M.: Mivacurium in special patient groups. Acta Anaesthesiol. Scand. 39 (Suppl. 106): 47-54 (1995) 30. Walts L.F., Dillon J.B.: The response of newborns to succinylcholine and d-tubocurarine. Anesthesiology 31: 35 (1969) 31. Meretoja O.A., Taivainen T.: Recent developments in muscle relaxation in children. Curr. Anaesth. Crit. Care 5: 202-208 (1994) 32. Fisher D.M., O’Keefe C., Stanski D.R., et al.: Pharmacokinetics and pharmacodynamics of D-tubocurarine in infants, children and adults. Anesthesiology 57: 203-208 (1982) 33. Jones A.G., Hunter J.M.: Anaesthesia in the elderly. Special Considerations. Drugs Aging 9: 319-331 (1996) 34. Eisenkraft J.B., Book W.J., Papatestas A.E.: Sensitivity to vecuronium in myasthenia gravis: a dose-response study. Canad. J. Anaesthesia 37: 301-3066 (1990) 35. Bell C.F., Florence A.M., Hunter J.M., et al.: Atracurium in the myasthenic patient. Anaesthesia 39: 961-968 (1984) 36. Wainwright A.P., Brodrick. P.M. Suxamethonium in myasthenia gravis. Anesthesiology 42: 950-957 (1987) 37. Hunter J.M., Jones R.S., Utting J.E.: Comparison of vecuronium, atracurium and tubocurarine in normal patients and in patients with no renal function. Br. J. Anaesthesia 56: 941-951 (1984) 38. Ward S., Boheimer N., Weatherley B.C., et al.: Pharmacokinetics of atracurium and its metabolites in patients with normal renal function, and in patients in renal failure. Br. J. Anaesthesia 59: 697-706 (1989) 39. Belmond M.R., Lien C.A., Quessy S., et al.: The clinical neuromuscular pharmacology of 51W89 in patients receiving nitrous oxide/opioid/barbiturate anesthesia. Anesthesiology 82: 1139-1145 (1995) 40. Hunter J.M.: Rocuronium: the newest aminosteroid neuromuscular blocking drug. Br. J. Anaesth. 76: 481-483 (1996) 41. Konstadt S.N., Reich D.L., Stanley T.E., et al.: A two-center comparison of the cardiovascular effects of cisatracurium (NimbexTM) and vecuronium in patients with coronary artery disease. Anesth. Analg. 81: 1010-1014 (1995) 42. Levy J.H., Davis G.K., Duggan J., et al.: Determination of the hemodynamics and histamine release of rocuronium (ORG 9426) when administered in increased doses under NO2/O2-sufentanil anesthesia. Anesth. Analg. 78: 318-321 (1994) 43. Debaene B., Lieutaud T., Billard V., et al.: ORG 9487 neuromuscular block at the adduct pollicis and the laryngeal adductor 5 muscles in humans. Anesthesiology 86: 1300-1305 (1997) |
Online ISSN 1011-6575
• Elsevier’s Bibliographic Databases: Scopus, EMBASE, EMBiology, Elsevier BIOBASE
SCImago Journal and Country Rank Factor
Articles published in this Journal are Indexed or Abstracted in:
• Chemical Abstracts
• Elsevier’s Bibliographic Databases: Scopus, EMBASE, EMBiology, Elsevier BIOBASE
SCImago Journal and Country Rank Factor
Τι είναι η Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Ελληνική Έκδοση-Οδηγίες προς τους Συγγραφείς
What is Epitheorese Klinikes Farmakologias και Farmakokinetikes-Greek Edition-Instrunctions to Authors
Άρθρα Δημοσιευμένα στην Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Ελληνική Έκδοση
Articles Published in Epitheorese Klinikes Farmakologias και Farmakokinetikes-Greek Edition
Συντακτικη Επιτροπή-Editorial Board
ΕΤΗΣΙΑ ΣΥΝΔΡΟΜΗ – ANNUAL SUBSCRIPTION
|
||
Γλώσσα Πλήρους Κειμένου –
Full Text Language |
Ελληνικά – Greek
|
|
Παραγγελία – Αγορά –
Order – Buy |
Ηλεκτρονική Μορφή: pdf (70 €) –
Digital Type: pdf (70 €) pharmakonpress[at]pharmakonpress[.]gr
|
|
Έντυπη Μορφή (70 € + έξοδα αποστολής)
Printed Type (70 € + shipping) pharmakonpress[at]pharmakonpress[.]gr
|