Τόμος 17 (1999) – Τεύχος 2 – Άρθρο 1 – Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Ελληνική Έκδοση – Volume 17 (1999) – Issue 2 – Article 1 – Epitheorese Klinikes Farmakologias και Farmakokinetikes-Greek Edition

 

Τίτλος – Title

Νόσος Alzheimer το 2000. Σύγχρονες Απόψεις για τη Φυσιοπαθολογία και τις Φαρμακευτικές Προσεγγίσεις της Νόσου

Alzheimer’s Disease 2000. Current Aspects and Drug Therapeutic Approaches

Συγγραφέας – Author

Χάρις Καραγεωργίου

Εργαστήριο Πειραματικής Φαρμακολογίας, Iατρική Σχολή Πανεπιστημίου Aθηνών

Haris Karageorgiou

Pharmacology Department, Medical School, Athens University, Athens, Hellas

Παραπομπή – Citation

Καραγεωργίου,Χ. : Νόσος Alzheimer το 2000. Σύγχρονες Απόψεις για τη Φυσιοπαθολογία και τις Φαρμακευτικές Προσεγγίσεις της Νόσου , Επιθεώρηση Κλιν. Φαρμακολ. Φαρμακοκινητ. 17 : 53-95 (1999)

Karageorgiou,H. : Alzheimer’s Disease 2000. Current Aspects and Drug Therapeutic Approaches, Epitheorese Klin. Farmakol. Farmakokinet. 17: 53-95 (1999)

Ημερομηνία Δημοσιευσης – Publication Date
2-05-1999
Γλώσσα Πλήρους Κειμένου –
Full Text Language

Ελληνικά – Greek

Παραγγελία – Αγορά –
Order – Buy
Ηλεκτρονική Μορφή: pdf (15 €)
Digital Type: pdf (15 )
pharmakonpress[at]pharmakonpress[.]gr
Λέξεις κλειδιά – Keywords

Νόσος Alzheimer, σύγχρονη θεώρηση, νευροπαθολογο-ανατομικά χαρακτηριστικά, νευροϊνιδιακές βλάβες, νευριτικές πλάκες, παθογένεια, γενετικοί παράγοντες, β-αμυλοειδές, δευτερογενείς παράγοντες, οξειδωτικό stress, ηλικία, γλυκοζυλίωση, δίαιτα πλούσια σε χοληστερόλη, α-παράγων νεκρώσεως όγκου, διαταραχές νευρομεταβίβασης, νευρομεταβιβαστές, νορεπινεφρίνη, ντοπαμίνη, σεροτονίνη, γλουταμικό, GABA, σωματοστατίνη, βαρέα μέταλλα, αργίλιο, ψευδάργυρος, υδράργυρος, φαρμακευτικές προσεγγίσεις, φαρμακοδυναμική, φαρμακοκινητική, κλινικές μελέτες, αλληλεπιδράσεις, ανεπιθύμητες ενέργειες, αντιχολινεστερασικά φάρμακα, φυσοστιγμίνη, επταστιγμίνη, γαλανθαμίνη, μετριφονάτη, τακρίνη, ριβαστιγμίνη, δονεπεζίλη, αγωνιστές χολινεργικών υποδοχέων, αγωνιστές μουσκαρινικών υποδοχέων, ξανομελίνη, μιλαμελίνη, αναστολείς νικοτινικών υποδοχέων, α-δρενεργικό σύστημα, σελεζιλίνη, διεγερτικά αμινοξέα, ανιρασετάμη, οξιρασετάμη, πιρακετάμη, αμπακίνες, μονοξείδιο του αζώτου, προστατευτικοί-επιβραδυντικοί παράγοντες, οιστρογόνα, αντιφλεγμονώδη, βιταμίνη Ε, ανταγωνιστές ασβεστίου, νιμοδιπίνη, νευροτροφικός παράγων, μέθοδοι αξιολογήσεως (MMSE, ADAS-Cog, κ.ά.), ανοσοποίηση με β-αμυλοειδές

Alzheimer’s disease, current aspects, histopathologic features, drug therapeutic approaches, neurofibrillary tangles, neurotic plaques, pathogenesis, genetic factors, environmental factors, oxidative stress, age, glycation, high cholesterol diet, tumor necrosis factor-α, neurotransmission disorders, neurotransmitters, norepinephrine, dopamine, 5-HT, glutamate, GABA, somatostatin, heavy metals, Al, Zn, Hg, pharmacodynamics, pharmacokinetics, clinical studies, drug interactions, adverse effects, anticho-linesterase inhibitors (AChEI’s), tacrin, rivastigmine, donepezile, physostigmine, epta-stigmine, galanthamine, metrifonate, cholinergic receptor agonists, milameline, xanome-line, adrenergic system, selegiline, excitatory aminoacids, aniracetam, oxiracetam, pir-acetam, protective agents, estrogens, antioxidants, vitamin E, calcium antagonists, ni-modipine, neurotrofic factor (NGF), methods of AD evaluation (MMSE, ADAS-Cog), immunization with amyloid-β
Λοιποί Όροι – Other Terms

Άρθρο

Article

Περίληψη – Summary

H νόσος του Alzheimer (NA) αποτελεί μία από τις πλέον θλιβερές νόσους της 3çò ηλικίας: περιλαμβάνει προοδευτική έκπτωση τόσο της μνήμης όσο και άλλων νοητικών λειτουργιών, διαταραχές συμπεριφοράς, όπως ψευδαισθήσεις και παραισθήσεις, που οδηγούν σε φυτική κατάσταση. H συχνότητα εμφανίσεώς της είναι ανάλογος με την ηλικία: 5-10% στους άνω των 65 ετών και μέχρι 45-50% στους άνω των 85 ετών. Υπολογίζεται ότι περίπου 7 εκατομμύρια ευρωπαίων έχουν προσβληθεί από την ΝΑ. Αυτή χαρακτηρίζεται από την παρουσία (α) των γεροντικών ή νευριτικών πλακών (εξωκυτταρίως), που συνίστανται από εκφυλισμένες νευρικές απολήξεις με κεντρική άθροιση β-αμυλοειδούς (Αβ), πρωτεϊνογλυκανών και άλλων πρωτεϊνών και (β) των νευροϊνιδιακών αλλοιώσεων που αποτελούν δεμάτια ελικοειδών ζευγαρωτών ινιδίων (ενδονευρωνικώς), που σημαντικό ρόλο για το σχηματισμό τους παίζει η υπερφωσφορυλίωση της μικροσωληναριακής tau πρωτεΐνης. TÝóóåñá τουλάχιστον γονίδια συσχετίζονται με τη NA: το γονίδιο της APP (χρωμόσωμα 21), της PS-1 (14), της PS-2 (1) και της ApoE4 (19) και όλα αυξάνουν την παραγωγή του Aâ42 πεπτιδίου. H άθροιση του Aâ στον εγκεφαλικό φλοιό είναι ένα πρώιμο και σταθερό γεγονός στην ανάπτυξη της NA και προηγείται άλλων εγκεφαλικών βλαβών και κλινικών συμπτωμάτων για πολλά χρόνια, ακόμη και για 10åôßåò. H εκφύλιση των χολινεργικών νευρώνων (φλοιού, ιπποκάμπου) και η ελάττωση της ACh και της ChAT πιστεύεται ότι συντελεί στην απώλεια της μνήμης στη NA. Måßùóç της νορεπινεφρίνης, της 5-HT, της σωματοστατίνης και άλλων νευρομεταβιβαστών προϊούσης της νόσου παρατη-ρούνται επίσης, αλλά όχι τόσο σταθερά και τόσο εντυπωσιακά. Δυσλειτουργία του ανοσοποιητικού συστήματος, βαρέα μέταλλα (Al) διαταραχή στο μεταβολισμό γλυκόζης, φλεγμονώδεις και άλλοι παράγοντες έχουν ενοποιηθεί, επίσης, ως αίτια της NA. Κατά τη διάρκεια της τελευταίας δεκαετίας, συστηματικές προσπάθειες για ανάπτυξη θεραπείας της ΝΑ κατέληξαν στα χολινεργικά φάρμακα, όπως οι αναστολείς της χολινεστεράσης και οι αγωνιστές των χολινεργικών υποδοχέων. Κλινικές μελέτες επί πολλών χιλιάδων ασθενών στις ΗΠΑ, Ευρώπη και Ιαπωνία έχουν επιβεβαιώσει την υπόθεση ότι μια σταθερά αύξηση στην ακετυλοχολίνη στον εγκέφαλο, λόγω αναστολής της χολινεστεράσης, προκαλεί σημαντική βελτίωση και σταθεροποίηση, για ένα διάστημα, των γνωσιακών λειτουργιών στην ελαφρά και μέτρια ΝΑ. Aíôé÷ïëéνεστερασικά φάρμακα 1çò γενεάς, όπως φυσοστιγμίνη, επταστιγμίνη, μετριφονάτη, τακρίνη και 2áò γενεάς, όπως γαλανθαμίνη, ριβαστιγμίνη και δονεπεζίλη, αγωνιστές των χολινεργικών υποδοχέων, όπως μιλαμελίνη και ξανομελίνη και φάρμακα που δρουν στους γλουταματεργικούς υποδοχείς (AMÐA), όπως η ανιρασετάμη, οξιρασετάμη και πιρακετάμη, φαίνεται να προσφέρουν κάποια βελτίωση και επιβράδυνση της επιδεινώσεως της NA. Aíôé-φλεγμονώδη, αντιοξειδωτικά, βιταμίνες, σελεζιλίνη, ανταγωνιστές Ca, οιστρογόνα και NGF ελπίζεται ότι πιθανόν δρουν ως προστατευτικά των νευρώνων. Γεγονός είναι ότι με τα αντιχολινεστερασικά φάρμακα ένα μέρος των ασθενών παρουσιάζει βελτίωση ή τουλάχιστον σταθεροποίηση για 6-24 μήνες στις γνωσιακές λειτουργίες, ενώ ένα άλλο μέρος των ασθενών δεν απαντά σε αυτή τη φαρμακευτική αγωγή, για άγνωστους προς το παρόν λόγους. Εξ άλλου, οι ανεπιθύμητες ενέργειες των φαρμάκων αυτών αναγκάζουν ορισμένους ασθενείς να διακόπτουν τη λήψη τους. Συμπερασματικά, η NA είναι πολυαιτιολογική νόσος και η πληρέστερη κατανόηση των μηχανισμών που την προκαλούν μπορεί μελλοντικά να οδηγήσει σε δημιουργία φαρμάκων που θα την αναστέλλουν. Σε αυτό η μοριακή Γενετική και κυτταρική Βιολογία βοηθούν τα μέγιστα. Eí τω μεταξύ η πρώιμη διάγνωση, η εξατομίκευση θεραπευτικής αγωγής με τα ήδη υπάρχοντα φάρμακα και η στενή παρακολούθηση της πορείας της NA θα προσφέρουν καλύτερη ποιότητα ζωής στους πάσχοντες για όσο το δυνατόν μεγαλύτερο διάστημα.

Alzheimer’s Disease (AD) is one of the most significant disease threats faced by older individuals characterized by progressive loss of memory and other cognitive functions. The age-specific prevalence of dementia and AD rises exponentially with chronological age, at least between the ages 65 and 85. A common histopathologic feature in the brains of patients, is the presence of neuritic or senile plaques and neurofibrillary tangles, in areas subserving memory and cognition, predominately in the hippo-campus and neocortex. A neurotic plaque is a cluster of degenerating nerve terminals with a core of amyloid protein (Aâ). Neurofibrillary tangles are bundles of paired helical filaments found inside neurons composed of highly phosphorylated forms of the microtubule-associated protein tau. At least four genes are implicated in the development of AD namely, the βAPP mutations located on chromosome 21, the PS-1 (14), PS-2 (1) and the ApoE4 (19), all of them increasing, the secretion of Aâ peptide. The aggregation of Aâ in brain cortex is an early and consistent event in the development of AD preceding other brain lesions for many years even decades. The degeneration of cholinergic neurons mainly in the ippocampus and cortex with a substancial decrease of Ach and ChAT was one of the earliest findings in AD. Since the cholinergic system appears to play an important role in memory function, the decrease in Ach in Alzheimer brain is believed to contribute to memory loss. Subsequent studies have shown decreases in Nor, 5-HT, somatostatin and other neurotransmitters but less dramatic and less consistent. Immune system  dysfunction, heavy metals (Al) infective and other factors as energy deficit has been implicated in the etiology of AD. The cholinergic hypothesis led to strategies to replace Ach or mimic its actions. Such drugs are the first and second generation AChEIs, Physo-stigmine, Galanthamine Tacrine, Rivastigmime, Donepezil, Metrifonate, cholinergic receptor-agonists Milameline, Xanomeline, and drugs acting on Glutamatergic receptors (AMPA) as Anirace-tam seems to offer beneficial effects, delaying the progress of the disease. NSAAs, anti-oxidants, Vitamin E, Selegilne, Ca-antagonists, Estrogens and NGF may act as neuron-protectors. Although the cause of AD is not known, research continues to uncover new information concerning possible mechanism of pathogenesis. While researchers strive for a better understating of the basic cellular and molecular mechanism of AD, clinicians continue to develop better tools for the diagnosis and staging of this disease. The means of managing the patient with AD are being improved so that a superior quality of life is retained for as long as possible.

Αναφορές – References
1. Alzheimer A.: Ueber eine eigenartige Erkrankung der Hirnrinde. Allg. Z. Psychiat. 64: 146-148 (1907)

2. Kraepelin E.: Psychiatrie. Ein Lehrbuch für studierende u Artzte (Band II), pp. 619-628, JA Barth, Leipzig, 1910

3. Jorm A.F., Korten A.E., Henderson A.S.: The prevalence of dementia: a quantitative integration of the literature. Acta Psychiatr. Scand 76: 465-479 (1987)

4. Evans D.A., Funkenstein H.H., Albert M.S., et al.: Prevalence of Alzheimer’s disease in a community population of older persons: higher than previously reported. JAMA 262: 2551-2556 (1989)

5. Mïýãéáò A. Nüóïò Alzheimer έγκαιρη διάγνωση, βοήθεια στην οικογένεια. Έκδοση EëëçíéêÞò Γεροντολογικής και Γηριατρικής Eôáéñåßáò. Δίκτυο Nüóïõ Alzheimer, European Commission, 1998

6. Wilcock K. Gordon (ed.): The Management of Alzheimer’s Disease. 1993

7. Lodish H., Βaltimore D., Berk A., Zipursky S.l., Matsudaira P., Darnell J.: Molecular Cell Biology. W.H. Freeman and Co, New York, 1995

8. Selkoe J. Dennis; Alzheimer’s, Disease: Genotypes, Phenotypes, and Treatments. Science. Vol. 275. 31 Janu-ary 1997.

9. Katzman R., Kawas C.: Risk Factors For Alzheimer’s disease. NeuroScience News, Volume 1, No 4., 1998 – Pei J.J., Gong X.C., Iqbal K., et al.: Subcellular distribution of protein phosphatases and abnormally phosphory-lated in the temporal cortex from Alzheimer’s disease and control brains. J. Neural. Transm. 105: 69-83 (1998)

10. Ashall F., Goate A.M.: Role of the beta-amyloid precursor protein in Alzheimer’s disease. Trends Biochem. Sci. 19: 42-46 (1994) – Kasa P., Farkas Z., Pakaski M., Forgon M., Gulya K., Papp H., Soos K.: Aged amyloid-b, peptide (1-42) and its fragments induce direct acetylcholine release, but do not affect high-affinity choline uptake in vitro. Fifth Intern. Geneva/Springfield Symposium on Advances in Alzheimer Therapy, April 15-18, 1998

11. Braak H., Braak E.: Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol. Scand. Suppl. 165: 3-12 (1996)

12. Watling J.K., Kebabian W.J. Neumeyer L.J. (eds): The RBI Handbook of Receptor Classification and signal transduction, 1995

13. Panegyres K.P.: The effects of excitotoxicity on the expression of the amyloid precursor protein gene in the brain and its modulation by neuroprotective agents. Fifth Intern. Geneva/Springfield Symposium on Advances in Alzheimer Therapy, April 15-18, 1998

14. Hardy J.: Molecular genetics of Alzheimer’s disease. Acta Neurol. Scand. 165 (Suppl.): 13-17 (1996)

15. Tang et al.: The ApoE-ε4 allele and the risk of Alzheimer disease among African Americans, whites, and Hispanics JAMA 279: 751-755 (1998)

16. Soininen H.S., Riekkinen J.P., Sr: APOE and memory in Alzheimer’s disease. Fifth Intern. Geneva/Springfield Symposium on Advances in Alzheimer Therapy, April 15-18, 1998

17. Mayeux R., Ottman R., Maestre G., et al.: Synergistic effects of traumatic head injury and apolipoprotein-epsilon 4 in patients with Alzheimer’s disease. Neurology 45 (3Pt 1): 555-557 (1995)

18. Levy-Lehad E., Wijsman EM, Nemens E., et al.: A familial Alzheimer’s disease locus on chromosome 1. Science 268: 970-972 (1995)

19. Safting P., Craessaerts K., et al.: The two major familial Alzheimer’s Disease Gene Products: Presenitin 1 and Amyloid Precursor Protein Interact Functionally, Neuroscience News, Volume 1, No 4., 1998

20. Lao J.I., Beyer K., Fernandez-Novoa L., Cacabelos R.: A possible epistasia between presenilin-1 gene and ApoE ε4 allele on Alzheimer disease in the spanish population. Fifth Intern. Geneva/Springfield Symposium on Advances in Alzheimer Therapy, April 15-18, 1998

21. Münch G., Schinzel R., Loske C., Li J.J., Vlassara H., et al.: Alzheimer’s disease – synergistic effects of Glucose deficit, oxidative stress and advanced glycation end products. J. Neural. Transm. 105: 439-461 (1998)

22. Mielke R., Kessler J., Szelies B., Herholz K., Wienhard K., Heiss D.W.: Normal and pathological aging-Findings of positron-emission-tomography. J. Neural. Transm. 105: 821-837 (1998)

23. Hoyer S.: Oxidative metabolism deficiencies in brains of patients with Alzheimer’s disease. Acta Neurol. Scand. 165 (Suppl.): 18-24 (1996)

24. Rattan I.S. Suresh: Ageing: a biological perspective. Mol. Aspects Med. 16: 439-508 (1995)

25. Holden R.J.: Could a high cholesterol diet cause Alzheimer’s disease in western society? [Hypothesis]. Hum. Psychopharmacol. Clin. Exp. 14: 185-188 (1999)

26. Baldwin R.L., Stolowitz M.L., Hood L., Wisnieski B.J.: Structural changes of tumor necrosis factor alpha associated with membrane insertion and chanel formation. Proc. Natl. Acad. Sci. USA 93: 1021-1026 (1996)

27. Kurochkim I.V., Goto S.: Alzheimer’s beta-amyloid-peptide specifically interacts with and is degraded by insulin degradading enzyme. FEBS Lett. 345: 33-37 (1994)

28. Mauduit C., Jaspar J.M., Poncelet E., et al.: Tumor necrosis factor-alpha antagonizes follicle-stimulating hormone action in cultured Sertoli cells. Endocrinology 133: 69-76 (1993)

29. Wickelgren I.: Estroge stakes a claim to cognition. Science 275: 675-678 (1997)

30. Heyes M.P., Saito K., Markey S.P.: Human macrophages convert L-tryptophan into neurotoxin quinolinic acid. Biochem. J. 283: 633-635 (1992)

31. Taylor M.W., Feng G.: Relationship between inferon-γ, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB 5: 2516-2522 (1991)

32. Cheng B., Mattson M.P.: Glucose deprivation elicits neurofibrillary tangle-like antigenic changes in hippocampal neurons: prevention by NGF and bFGF. Exp. Neurol. 117: 114-123 (1992)

33. Klawans L.H. Goetz G. Ch., Tanner M.C.: Textbook of Clinical Neuropharmacology and Therapeutics. 2nd Ed., Raven Press, 1992

34. Davies P., Maloney A.J.F.: Selective loss of central cholinergic neurons in Alzheimer’s disease (letter). Lancet 2: 1403 (1976)

35. Perry E.K., Tomlinson B.E., Blesed G.: Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br. Med. J. 2: 1457-1459 (1978)

36. Young A.B., Pemmey J.B.,Jr.: Neurotransmitter receptors in Alzheimer disease. In: (Terry R.D., Katzman R., Bick K.Z., eds) Alzheimer Disease. Pp. 293-303, Raven Press, New York, 1994

37. Gowburn R.F., Fowler C.J., O’Neill E.: Neurotransmitters, signal transduction and second-messengers in Alzheimer’s disease. Acta Neurol. Scand. Suppl. 165: 25-32 (1996)

38. Zubenko S.G.: Molecular neurobiology of Alzheimer’s disease (Syndrome?). Harvard Rev. Psychiatry 5: 177-213 (1997) (Ελληνική μετάφραση)

39. Katzung G.B.: Basic and Clinical Pharmacology, 7th ed., 1998

40. De Keyser J., Ebinger G., Vanquelin G.: D1-dopamine receptor abnormality in frontal cortex points to a functional alteration of cortical cell membranes in Alzheimer’s disease. Arch. Neurol. 47: 761-763 (1990)

41. Bowen D.M., Francis P.T., Pangalos M.N., Stephens P.H., Procter A.W.: Treatment strategies for Alzheimer’s disease. Lancet 339: 132-133 (1992)

42. Måíôåíüðïõëïò Γ.: Η νόσος του Alzheimer. KëéíéêÝò διαγνωστικές και φαρμακευτικές προσεγγίσεις. University Studio Press Θεσ/νίκη, 1997

43. Kùíóôáíôéíßäçò Ι., Måíôåíüðïõëïò Γ. Nüóïò του Alzheimer και λοιπές άνοιες της Γης ηλικίας. Έκδοση UCB, 1991

44. Furchgott R.F., Ignarro L.J., Murad F.: The 1998 Nobel Prize in Physiology or Medicine. Epitheor. Klin. Farmakol. Farmakokinet. Int. Ed. 12: 3-11 (1998)

45. Πλέσσας Χ.Τ., Πλέσσας Σ.Τ.: Οξείδιο του αζώτου: Βραβείο Nobel Ιατρικής και Φυσιολογίας 1998. Επιθεωρ. Κλιν. Φαρμακολ. Φαρμακοκινετ. 16: 133-143 (1998)

46. Borda T., Genato A., Stetin-Borda L., Gremaschi G.: Involvement of endogenous nitric oxide signaling system in brain muscarinic acetylcholine receptor activities. J. Neural. Transm. 105: 193-204 (1998)

47. Mïncada S., Higgs E.A.: Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB J. 9: 1319 (1995)

48. Salvenini D., et al.: Nitric oxide activates cyclooxygenase enzyme. Proc. Natl. Acad. Sci. USA 90: 7240 (1993)

49. Bpoom F.E., Kupfer D.J.: Psychopharmacology: The Fourth Generation of Progress. Raven Press, New York, 1994

50. Rifat S.L., Eastwood M.R.: The role of aluminium in dementia of Alzheimer’s type: A review of the hypotheses and summary of the evidence. In: (Burns A., Levy R., eds) Dementia. Pp. 268-280, Chapman and Hall, London 1994

51. Hock C., Drasch G., Golombowski S., et al.: Nitsch M.R. Increased blood mercury levels in patients with Alzheimer’s disease. J. Neural Transm. 105: 59-68 (1998)

52. Felician D.L., Sandson A.T.: The Neurobiology and Pharmacotherapy of Alzheimer’s Disease. J. Neuropsy-chiatry Clin. Neurosci. Winter 11: 1 (1999)

53. Molina A.J., Jimenéz-Jimenéz J.F., Aquilar V. M. et al and Martinez-Para C.M.: Cerebrospinal fluid levels of transition metals in patients with Alzheimer’s disease. J. Neural. Transm. 105: 479-488 (1998)

54. Beller S.A., Overall J.E., Swann A.C. Efficacy of oral physostigmine in primary degenerative dementia. A double blind study of response to different dose levels. Psychopharmacology 87: 147-149 (1975)

55. Goodman and Gilman’s The Pharmacological Basis of Therapeutics. 9th Ed., 1996

56. Klein J., Erb C., Kopf S., Troost J., Köppen A., Löf-felholz K.: Adaptive changes of choline uptake and acetylcholine synthesis in the brain: implications for anti-cholinesterase therapy. Fund. Clin. Pharmacol. 13(Suppl. 1): 51S (1999)

57. Báñþíïò Δ.: IáôñéêÞ Φαρμακολογία. Σσ. 558-562, Eêäüóåéò Παρισιάνος, Αθήνα, 1986

58. Laurence R.D., Bennett N.P.: Clinical Pharmacology. P. 385, 7th & 8th ed., Churchill Livingstone, 1992 & 1996

59. The management of Alzheimer’s Disease by Gordon K. Wilcock. Wrightson Biomedical Publishing Ltd, 1993

60. Sano M., Bell K., Marder K., Sricks D., Stern Y., Mayeux R.: Safety and efficacy of oral physostigmine in the treatment of Alzheimer’s disease. Clin. Neuropharmacol. 16: 61-69 (1993)

61. Schartz G.: US results of extended – release phy-sostigmine in the treatment of Alzheimer’s disease. 35th Annual Meeting of the Amer. Coll. of Neuropsychophar-macology, San Juan, Puerto Rico, Dec. 1996

62. Levy A., Brandeis R., Treves T., et al.: Transdermal physostigmine in the treatment of Alzheimer’s disease. Alzheimer Dis. Assoc. Dissord. 8: 15-21 (1994)

63. Furey L.M.: Functional Brain Studies of Cholinergic Modulation of memory in Humans. Fifth Intern. Geneva Springfield/Symposium on advances in Alzheimer Therapy, April 15-18, 1998

64. Wilcock G.K., Harrold P.L.: Treatment of Alzheimer’s disease: future directions. Acta Neurol. Scand. Suppl. 165: 128-136 (1996)

65. Wilson K., Bowen D., Francis P., Tyrrell P. Effect of central cholinergic stimulation on regional cerebral blood flow in Alzheimer’s disease. Br. J. Psychiatry 158: 558-562 (1991)

66. Enz A.: Brain selective inhibition of acetylcholines-terase: a novel approach to therapy for Alzheimer’s Disease. Progress in Brain Research, Vol. 98, Elsevier Science Publ. B.V., 1993

67. Troetel W.M., Imbimbo B.P.: Overview of the development of eptastigmine, a long acting cholinesterase inhibi-tor. Fifth Intern. Conference on Alzheimer’s disease and Related Disorders. Osaka, Japan, July 1996

68. Iliev A., Traykov V., Mantchev G., et. al.: Effect of galanthamine on the speed of learning and memory of rats after transient forebrain ischemia. Fund. Clin. Pharmacol. 13(Suppl. 1): 138s (1999)

69. Iliev A., Traykov V., Prodanov D., et. al.: Effect of the acetylcholinesterase inhibitor galanthamine on learning and memory in prolonged alcohol intake rat model of acetylcholine deficit. Methods Find. Exp. Clin. Pharmacol. 21: 297-301 (1999)

70. Wilcock G., Wilkinson D.: Galanthamine hydrobromide interim results of a group comparative, placebo controlled study of efficacy and safety in patients with a diagnosis of senile dementia of the Alzheimer’s type. Fifth Intern. Conf. on Alzheimer’s Disease and Related Disorders, Osaka, Japan, July, 1996

71. Dal-Bianco P., Maly J, Wober Ch. et al.: Galanthamine treatment in Alzheimer’s disease. J. Neural. Transm. 33 (Suppl.): 59-63 (1991)

72. Samuels C., Steven and Davis L. Kenneth: Experimental approaches to congitive disturbance in Alzheimer’s disease. Harvard Rev. Psychiatry 6(N2 1): 11-22 (1998)

73. Mc Keith I., Dubois B., Collins O., Meulian D.: Efficacy and Safety of Metrifonate in Alzheimer’s disease. Fifth Intern. Geneva/Springfield Symposium on Advances in Alzheimer Therapy, April 15-18, 1998

74. Perry M.C. de Jongh. Clinical Profile of Metrifonate. in Alzheimer’s disease. Fifth Intern. Geneva/Springfield Symposium on Advances in Alzheimer Therapy, April 15-18, 1998

75. Kaufer D.: Metrifonate in Alzheimer’s Disease: Effect on Neuropsychiatric Symptoms. Fifth Intern. Geneva/Springfield Symposium on Advances in Alzheimer Therapy, April 15-18, 1998

76. Tacrine (Prescribing Information From US package insert). Warner-Lambert (Parke – Davis Division), 1995

77. Schneider L.S.: Clinical Pharmacology of aminoac-ridines in Alzheimer’s disease. Neurology 43(Suppl. 4): 564 (1993)

78. Summers W.K., Majovski L.V., Marsh G.M., Tachiki K., Kling A.: Oral tetrahydroaminoacridine in long-term treatment of senile dementia. Alzheimer type. N. Eng. J. Med. 315: 1241-1245 (1986)

79. Fitten L.J., Perryman K.M., Gross P.L., Fine H., Cummins J., Marshall C.: Treatment of Alzheimer’s disease with short-and long-term oral THA and Lecithin: a double-blind study Am. J. Psychiatry 147: 239-242 (1990)

80. Chatellier G., Lacombler L.: Tacrine (THA) and lecithin in senile dementia of the Alzheimer type: a multicentre trial. Br. Med. J. 300: 495-499 (1990)

81. Eagger S., Levy R., Sattakian B.J.: Tacrine in Alzheimer’s disease. Lancet 337: 989-992 (1991)

82. Farlow M., Gracon S.I., Hershey L.A., Lewis K.W., Sadowsky C.H., Dolan-Ureno J.: For the Tacrine study group. A controlled trial of tacrine in Alzheimer’s disease. JAMA 268: 2523-2529 (1992)

83. Watkins P.B. Zimmerman H.J., Knapp M.S., Gracon S.I., Lewis K.W.: Hepatotoxicity effects of tacrine administration in patients with Alzheimer’s disease. JAMA 271: 992-998 (1994)

84. Ford J.M., Truman C.A., Wilcock G.K., Roberts C.J.C.: Serum concentrations of tacrine hydrochloride predict its adverse effect in Alzheimer’s disease. Clin. Pharmacol. Ther. 53: 691-695 (1993)

85. TóïëÜêçò M., Iáêùâßäïõ B., Tóéáïýóçò Γ., ZÜííïò Σ., KÜæçò A.: Aéôßá της διακοπής της θεραπείας με τακρίνη ασθενών με άνοια. 3ç NåõñïëïãéêÞ KëéíéêÞ TìÞìáôïò IáôñéêÞò A.Π.Θ. Γ.Π.N.Θ (Γεώργιος Παπανικολάου)

86. Howell G.J.: Use of tacrine hydrochloride (Cognex) in private practice. Acta Neurol. Scand. Suppl. 165: 123-127 (1996)

87. Gracon S.I.: Evaluation of tacrine hydrochloride (Cognex) in two parallel – group studies. Acta Neurol. Scand. Suppl. 165: 114-142 (1996)

88. Data on file. Integrated Summary of Effectiveness. Novartis Pharmaceutical Corporation. 15th April, 1997

89. Data on file. SDZ ENA 713 in mild to moderate senile dementia of the Alzheimer type. Study report.

90. Farlow M.R., Hake A.M.: Mechanism of action and metabolism of acetylcholinesterase inhibitors: implications for treatment. Intern. J. Geriatric Psychopharmacol. 1(Suppl. 1): S2-S6 (1998)

91. Enz, A. Boddeke H., Gray J. et al.: Pharmacologic and clinico-pharmacologic properties of SDZ ENA 713, a cen-trally selective acetylcholinesterase inhibitor. Ann. N.Y. Acad. Sci. 640: 272-275 (1991)

92. Weinstock M. Razin M., Chore M, et al.: Pharmacological evaluation of phenylcarbamate as CNS – selective acetylcholinesterase inhibitors. J. Neural. Transm 43(Suppl.): 219-25 (1994)

93. Cutler N.R., Polinsky R.J., Sramek J.J. et al.: Dose-dependent CSF acetylcholinesterase inhibition by SDZ ENA 713 in Alzheimer’s disease. Acta Neurol. Scand. 97: 244-250 (1998)

94. Ohara T., Taniaka K., Fukaya H., Demura N., limmura A., Seno N.: SDZ ENA 713 facilitates central cholinergic function and ameliorates spatial memory impairment in rats. Behav. Brain Res. 83: 229-233 (1997)

95. Spencer M., Noble S.: Rivastigmine. A Review of its Use in Alzheimer’s Disease. Drugs Aging 13: 391-411 (1998)

96. Anand R.: New results and clinical profile of Exelon. WVI World Congress of Neurology, Buenos Aires Satellite Symposium, 17 Sept., 1997

97. Anand R., Hartman R., Messina J., Grahams S., Saint A.: Long term treatment with Rivastigmine continues to provide benefits for up to one year. Fifth Intern. Geneva/Springfield Symposium on Advances in Alzheimer Therapy, April 15-18, 1998

98. Enz A., Anand R.: Overview of Cholinesterase inhibitors clinically used in Alzheimer’s disease. Fifth Intern. Geneva/Springfield Symposium on Advances in Alzheimer Therapy. April 15-18, 1998

99. Anand R., Garabawi G, Enz A.: Efficacy and safety results of the early phase studies with Exelon (TM) (ENA-713) in Alzheimer’s disease: an overview. J. Drug Devel. Clin. Practice 8:109-116 (1996)

100. Schneider L.S., Anand R., Farlow M.R.: Systematic review of the efficacy of rivastigmine for patients with Alzheimer’s disease. Intern. J. Geriatric Psychopho-rmacol. 1(Suppl. 1): S26-S34 (1988)

101. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th ed. (DSM-IV) American Psychiatric Press: Washington DC, 1994

102. Röslez M., Anand R., Cicin-Sain A., Cauthier S., Agid Y., Dal-Bianco P., Stahelin B.H., Hartman R., Gharabawi M.: On behalf of the B 303 Exelon study Group. Efficacy and safety of rivastigmine in patients with Alzheimer’s disease: international randomized controlled trial. Br. Med. J. 318: 663-640 (1999)

103. Gorey-Bloom J., Anand R., Veach J.: A randomized trial evaluating the efficacy and safety of ENA 713 (rivastigmine, tartrate) a new acetylcholinesterase inhibitor, in patients with mild to moderately severe Alzheimer’s disease. Intern. J. Geriatric Psychopharmacol. 1: 55-65 (1998)

104. Saxena A., Fedorko J.M., Frazier D.S., Kozikowski A.P., Taylor P., Doctor B.P.: Indentification of residues involved in the binding of E2020 to mammalian acetylcho-linesterase. Fifth Intern. Geneva/Springfield Symposium on Advances in Alzheimer Therapy. April 15-18, 1998

105. Sugimoto H., Timura Y. et al.: Synthesis and acetyl-cholinesterase activity of E2020. Bioorg. Med. Chem. Lett. 2(8): 871 (1992)

106. Sugimoto H., Timura Y.: Synthesis and structure activity relationships of AChEI E2020 and related compounds J. Med. Chem. 38(24): 4821 (1995)

107. Rogers S., Friedhoff K. and the ARICEPT International Project Team. Aricept: A well-tolerated and clinically ef-fective treatment for the symptoms of Alzheimer’s disease – Results from worldwide clinical Trials. Fifth Intern. Geneva/Springfield Symposium on Advances in Alzheimer Therapy. April 15-18, 1998

108. Kosaka T., Yamanishi Y. et al.: Effects of E2020 on extracellular levels of Ach in rat cerebral cortex measured by microdialysis. Eur. J. Pharmacol. 183: 1936 A 28. Data on File Pfizer, New York, (1990)

109. Rogers S.L., Friedhof L.T., et al.: Distribution of E2020 in human plasma and RBC and its correlation with cholin-esterare activities. Pharm. Res. 59: 338 (1992)

110. Δεδομένα του Arisept στον φάκελλο – μονογραφία της δονεπεζίλης 1996. (1996 έγκριση στις HÐA, 1998, έγκριση στην EëëÜäá).

111. Rogers S.L., Friedhoff L.: Pharmacokinetic and pharmacodynamic profile of donepezil following single and multiple oral doses. Clin. Pharmacol. Ther. 61(2): 181 (P11-63) (1997)

112. Rogers S.l., Friedhoff L.: Pharmacokinetics of done-pezil are unchanged in patients with impaired renal func-tion. Clin. Pharmacol. Ther. 61(2): 217 (P111-91) (1997)

113. Tiseo P.J. Rogers S.L., Friedhoff L.T.: The pharma-cokinetic profile of donepezil in patients with impaired liver function. Clin. Pharmacol. Ther. 61(2): 184 (P11-75) (1997)

114. Tiseo P.J. Rogers S.L., Friedhoff L.T.: The pharma-cokinetics and pharmacodynamics of (R) – and (S) – war-farin are unaffected by coadministration of donepezil HCl. Eur. Neuropsychopharmacol. 7(S2): S251-252 (P4023) (1997)

115. Tiseo P.J. Rogers S.L., Friedhoff L.T.: Coadministration of donepezil HCl and Digoxin produces no pharmacokinetic or pharmacodynamic interactions. Eur. Neuropsychopharmacol. 7: 5252 (1997)

116. Rogers S.L., Friedhof L.T.: The efficacy and safety of Donepezil in patients with Alzheimer’s disease: the results of a US multicentre, randomized, double-blind, placebo- controlled trial. Dementia 7: 293-303 (1996)

117. Friedhoff L.T. Farfow M.R., Mohs R.C., Rogers S.L.: Donepezil (E2020) demonstrates significant improvements in congitive and global function in patients with mild-to-moderately severe Alzheimer’s disease. Presented at the 35th Annual Meeting of the American College of Neuro-psychopharmacology, San Juan, Puerto Rico, December, 1996

118. Rogers S.L., Friedhoff L.T.: Donepezil improves cognition in patients with mild to moderate AD: Results of ADAS-Cog analysis, in a 30 – week phase III study. Eur. Neuropsychopharmacol 7(Suppl. 2): S251 (1997)

119. Friedhoff L.T., Rogers S.L.: Donepezil lenghtens time to loss of activities of daily living and cognition in patients with mild to moderate AD. Eur. Neuropsychopharmacol. 7(Suppl. 2): S246 (1997)

120. Hammer R., Berrie, C.P., Birdsall N.J., Bargen A.S.V., Hulme E.C.: Pirenzepine distinguishes between different subclasses of muscarinic receptor. Nature 283: 90-92 (1980)

121. Brown D.A., Abogadie F.C., Aelen T.G.J., Buckley N.J., et al.: Muscarinic mechanism in verve cells. Life Sci. 60: 1137-1144 (1997)

122. Bonner T.I., Buckbey N.J., Young A.C., Brann M.R.: Identification of a family of muscarinic receptor genes. Science 237: 527-531 (1987)

123. Bruning T.A., Hendriks M.G.C., Chang P.C., Knypers E.A.P., Van Zwieten P.A.: In vivo characterization of vasodilating muscarinic – receptor subtypes in humans Circ. Res. 74: 912-919 (1994)

124. Yasuda R.P., Ciesla W., Flores L.R., Wall S.J. Li. M., Satkus S.A., Weisstein, J.S., Spagnola B.V., Wolfe B.B.: Development of antisera selective for M4 and M5 mus-carinic cholinergic receptors: distribution of M4 and M5 receptors, in rat brain. Mol. Pharmacol. 43: 149-157 (1993).

125. Caulfield M.P.: Muscarinic receptors -characterization, coupling and function. Pharmacol. Ther. 58: 319-379 (1993)

126. Raiteri M. Leardi R., Marchi M.: Heterogeneity of presynaptic muscarinic receptors regulating neurotransmitter release in the rat brain. J. Pharmacol. Exp. Ther 228: 209-214 (1984)

127. Pitschner H.F., Wellstein A.: Naunyn-Schmiedeberg’s Arch. Pharmacol. 388: 207-210 (1988)

128. Poller U., et al.: J. Am. Coll. Cardiol. 29: 187-193 (1997)

129. Janossy A., Orso E., Szalay K.S., et al.: Cholinergic regulation of the rat adrenal zona glomerulosa J. Endocri-nol. 157: 305-315 (1998)

130. Flynn D.D., Weinstein D.A., Mash D.C.: Loss of high affinity agonist binding to M1, muscarinic receptors in Alzheimer’s disease: implications for the failure of the cholinergic replacement therapies. Ann Neurol. 29: 256-262 (1991)

131. Flynn D.D., Weinstein D.A., Mash D.C. Levey A.L.: Differential regulation of molecular sybtypes of muscarinic receptors in Alzheimer’s disease. J. Neurochem. 64: 1888-1891 (1995)

132. Pearce B.D., Potter L.T.: Coupling of m1 muscarinic receptors to G-protein in Alzheimer’s disease. Alzheimer Dis. Assoc. Disord. 5:163-172 (1991)

133. Cotman C.W.: Mechanisms of apoptosis and potential significance in Alzheimer’s disease. Fifth Intern. Ge-neva/Springfield Symposium on Advances in Alzheimer Therapy, April 15-18, Congenes 1998

134. Perry E., Court J., Coodchild R., et al., and Perry R.: Clinical neurochemistry: developments in dementia re-search based on brain bank material J. Neural Transm. 105: 915-933 (1998)

– Wess J., Blin N., Mutschler E., Bluml K.: Muscarinic acetylcholine receptors: Structural basis of ligand binding and G protein coupling. Life Sci. 56: 915-922 (1995)

– Saffen D., Mieda M., Okamura M., Haga T.: Control elements of muscarinic receptors gene expression. Life Sci. 64: 479-486 (1999)

– Nadler S. Z., Rosoff L.M., Hamilton E.S., et al. and Nathenson M.N.: Molecular analysi¶s of the regulations of muscarinic receptors expression and function. Life Sci. 64: 375 & 379 (1999)

135. Sramek J.J., Hurbey D.J., Wardle T.S., Satterwhite J.H., Hourani J., et al.: The safety and tolerance of xanomeline tartrate in patients with Alzheimer’s disease. J. Clin. Pharmacol. 35: 800-806 (1995)

136. Altstiel L.: Cholinomimetic therapy in Alzheimer’s disease: experience with the muscarinic agonist xanomeline. Presented at the second annual conference on the Therapeutics of Alzheimer’s Disease, Garden City, New York, June 1996

137. Bodiek N.C., Offen W.W. Levey H.L., Cutler N.R., et al.: Effect of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer’s disease. Arch. Neurol. 54: 465-473 (1997)

138. Sedman A.J., Bockbrader H., Schwarz R.D.: Preclinical and phase I clinical characterization of CI-979/RU 35926, a novel muscarinic agonist for the treatment of Alzheimer’s disease. Life Sci. 56: 877-882 (1995)

139. Kumar R.: Efficacy and Safety of SB 202026 as a symptomatic treatment for Alzheimer’s disease (Abstract.) Ann. Neurol. 40: 504 (1996)

140. Ficher A., Harring R., Pittel Z., Brandeis R., et al.: M1 Muscarinic agonists from Treatment to delaying the progression of Alzheimer’s disease (AD). Fifth Inter. Geneva/Springfield Symposium on advances in the Alzheimer Therapy, April 15-18, 1998

141. Michaelson D.M., Ficher A.: Pharmacological reversal of neurochemical and cognitive derangements in apolipo-protein E-deficient mice. Fifth Inter. Geneva/Springfield Symposium on advances in the Alzheimer Therapy, April 15-18, 1998

142. Nordberg A., Hellström-Lindahl E., Marutle A., et al.: Functional role of human nicotinic receptor subtypes in neurodegenerative disorders. Fund. Clin. Pharmacol. 13(Suppl.1): 23s (1999)

143. Mesulam M.: Update on cholinergic themes in Alzheimer’s disease (AD). Fifth Inter. Geneva/Springfield Symposium on advances in the Alzheimer Therapy, April 15-18, 1998

144. Flyn D.D., Mash D.C.: Characterization of L-[3H] nicotine binding in human cerebral cortex; comparison between Alzheimer’s disease and the normal. J. Neuro-chem 47: 1948-1954 (1986)

145. Nordberg A., Winblad B.: Reduced number of [3H]nicotine and [3H] acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci. Lett 2: 115-119 (1986)

– Nordberg A.: Human nicotinic receptors-their role in aging and dementia. Neurochem. Int. 25: 93-97 (1994)

146. Kellar K.J., Wonnacott S.: Nicotinic cholinergic receptors in Alzheimer’s disease. In: (Wonnacott S,, Rusel M.A.H., Stolerman I.P., eds) Nicotine psychopharmacology. Pp. 341-373, Oxford University Press, London, 1990

147. Kellar K.J., Whitehouse P.S., et al.: Muscarinic and nicotinc cholinergic binding sites in Alzheimer’s disease cerebral cortex. Brain Res. 436: 62-68 (1987)

148. Schröder H., Wevers A., Nowacki S., Steinhein O. Giacobini G, et al.: Nicotinic receptors in Alzheimer’s disease (AD) and aging. Fifth. Intern. Geneva/Springfield Symposium on advances in Alzheimer Therapy. April 15-18, 1998

– Giacobini E., De Sarno P., Mcllhany M., Clark B.: The cholinergic receptors system in the frontal lobe of Alz-heimer patients. In: (Clementi F., Botti C., Sher E., eds) Nicotinic Acetylcholine Receptors in the Nervous System. Pp. 367-378, Springer, New York, 1988

– Sunderland T., Tariot P.N., Newhouse P.A.: Differen-tial responsivity of mood, behavior, and cognition to cho-linergic agents in elderly, neuropsychiatric populations. Brain Res. 472: 371-89 (1988)

– Kalaria R.N., Homayoun P., Whitehouse P.S.: Nico-tinic cholinergic receptors associated with mammalian cerebral vessels. J. Auton. Nerv. Syst. 49 (Suppl.): S3-7 (1994)

149. Rinne J.O., Myllykylä D., Lönnberg P., Marjamaki P.: A postmortem study of brain nicotine receptors in Parkin-son’s and Alzheimer’s disease. Brain Res. 547: 167-70 (1991)

150. Sabbagh N.M., Reid T.R., Corey-Bloom J., Rao S. T., et al.: Correlation of nicotinic binding with neurochemical markers in Alzheimer’s disease. J. Neurol Transm. 105: 709-717 (1998)

151. Martin-Ruiz C.M., Court J.A., Molnar E., et al.: Alpha 4 but not alpha 3 nicotinic acetylcholine receptor subunits are lost from the temporal cortex in Alzheimer’s disease. Fund. Clin. Pharmacol. 13(Suppl.1): 143s (1999)

152. Maelicke A., Sehrattenholz A., Pereira E., Albuquerque E.: Nicotinic receptors in the central nervous system: implications for Alzheimer’s disease: Fifth Intern. Geneva/Springfield Symposium on advances in Alzheimer therapy, April 15-18, 1998

153. Wonnacott S.: Presynaptic nicotinic modulation of dopamine-glutamate interactions in the rat striatum. Fund. Clin. Pharmacol. 13(Suppl.1): 22s (1999)

154. Bergis O.E. Moser P.C., Sanger D.J.: Nicotinic agonists and animal models of learning and memory. Fifth Intern. Geneva/Springfield Symposium on Advances in Alzheimer Therapy, April 15-18, 1998

155. Kem W.R.: Pharmacological Rationale for treatment of cognitive dysfunction in Alzheimer’s disease with alpha nicotinic receptor agonists. Fifth Intern. Geneva/Springfield Symposium on Advances in Alzheimer Therapy, April 15-18, 1998

156. Lloyd K., Menzaghi F., Bontempi B., Chavez-Noriega L., Schneider J. Buccafusco J., et al.: The cognitive profile of SIB-1553A a B4-selective neuronal nicotinic acetylcho-line receptor (nAChR) agonist. Fifth Intern. Geneva/Springfield Symposium on Advances in Alzheimer Therapy, April 15-18, 1998

157. Lippiello M.P., Bencherif M., Caldwell S.W., Dull G., Hayer R.J.: Discovery of novel nicotinic ligands with thera-peutic potential. Fifth Intern. Geneva/Springfield Symposium on Advances in Alzheimer Therapy, April 15-18, 1998

158. Nordberg A., Svenson A.L., Miao H., Zhang X.: Neuroprotective effects in brain elicited via nicotinic recep-tors. Fifth Intern. Geneva/Springfield Symposium on Advances in Alzheimer Therapy, April 15-18, 1998

159. Zhang X., Miao H., Nordberg A.: Protective effects of nicotine on the neurotoxicity induced by long term treatment with β-amyloid in PC12 cells. Fifth Intern. Geneva/Springfield Symposium on Advances in Alzheimer Therapy, April 15-18, 1998

160. Giacobini E.: Nicotine acetylcholine receptors in human cortex: aging and Alzheimer’s disease. In: (Lippiello, P.N.M., Collins A.C., Gray J..A., Robinson J.A., eds) The Biology of Nicotine: Current Research Issues. Pp. 183-194, Raven Press, New York, 1992

161. McGehee D.S., Role L.W.: Presynaptic ionotropic receptors. Curr. Opin. Neurobiol. 6: 342-349 (1996)

162. Newhouse P.A., Sunderland T., Tariot P.N., Blum-bardt C.L., et al.: Intravenous nicotine in Alzheimer’s disease: a pilot study. Psychopharmacology 95: 171-175 (1988)

163. Riederer P.: Selegiline as gold-standard in neuroprotection research. Fund. Clin. Pharmacol. 13(Suppl.1): 34s (1999)

164. Dallü H.: Effect of chronic (-) deprenyl treatment on lifespan and copulatory activity in female rats. Fund. Clin. Pharmacol. 13(Suppl.1): 148s (1999)

165. Martignoni M., Bono G., Blandini E., et al.: Mono-amines and related metabolites levels in the CSF of patients with dementia of Alzheimer type. Influence of treatment with L deprenyl. J. Neural Transm. 3: 15-25 (1991)

166. Riekkinen P.J.,Sr., Koivisto K., Reinikainen K.J., Hanninen T., et al.: Can APO-4 subtype predict response to selegiline treatment in Alzheimer’s disease? Fifth Intern. Geneva/Springfield Symposium on advances in Alzheimer therapy, April 15-18, 1998

167. Sano M., Christopher E., Ronald C.T., et al.: A controlled trial of selegiline, Alpha-tocopherol, or both as treatment for Alzheimer’s disease. N. Engl. J. Med. 336: 1216-1222 (1997)

168. Sobow T., Strzelec J.: Delusional psychosis induced by selegiline in late-onset Alzheimer’s disease. Fifth Intern. Geneva/Springfield Symposium on advances in Alzheimer therapy, April 15-18, 1998

169. Cool J.T., Middleton H.C., Robbins T.W., Sahakian B.J.: Contrasting effects of clonidine and diazepam on tests of working memory and planning. Psychopharmacology 120: 311-321 (1995)

170. Camacho F., Smith C.P., Yargas H.M., Winslov J.J.: a2-Adrenoceptor antagonists potentiate acetylcholines-terase inhibitor effects on passive avoidance learning in the rat. Psychopharmacology 124: 347-354 (1996)

171. Coull J.T., Sahakian B.J., Hodges J.R.: The a2-antagonist idazoxan remediates certain attentional and executive dysfunction in patients with dementia of frontal type. Psychopharmacology 123: 239-249 (1996)

172. Meana J.J., Barturen F., Garro M.A., Garcia-Sevilla J.A., et al.: Decreased density of presynaptic a2-adrenoceptors in postmortem brains of patients with A.D. J. Neurochem. 58: 1896-1904 (1992)

173. O’Neill C., Fowler C.J., Wiehager B., Cowburn R.F., Alafuzoff I., Windlad B.: Coupling of human brain cerebral cortical a2-adrenoceptors to GTP-binding proteins in Alz-heimer’s disease. Brain Res. 563: 39-43 (1991)

174. White W.F., Nadler J.V., Hamberger A., Cotman C.W., Cummins J.T.: Glutamate as a transmitter of hip-pocampal perforant path. Nature 270: 356-357 (1977)

175. Streit P.: Glutamate and aspartate as transmitter can dictates for systems of the cerebral cortex. In: (Jones E.J., Peters A., eds) Cerebral: Cortex. Vol. 2, pp. 119-143, Plenum, New York, 1984

176. Greenamyre J.T., Young A.B.: Excitatory amino acids and Alzheimer’s disease. Neurobiol. Aging 10: 593-602 (1989)

177. Ellison D.W., Beal M.F., Mazurek M.F., et al.: A post mortem study of amino acid neurotransmitters in Alz-heimer’s disease. Ann. Neurol. 20: 616-621 (1986)

178. Zubenko S.G.: Molecular neurobiology of Alzheimer’s disease (Syndrome?). Harvard Rev. Psychiatry 5: 177-213 (1997) (Ελληνική μετάφραση)

179. Cotman C.W., Kochle, J.S. Miller S., Ular. J., Bridges R.J.: Excitatory amino acid neurotransmission. In: Psychopharmacology: The Fourth Generation of Progress. (Bloom F.E., Kupfer D.J., eds.). Pp. 75-85, Raven Press, New York, 1994

180. Collingridge G.L., Loster R.A.: Excitatory aminoacid receptors in the vertebrate central nervous system. Phar-macol. Rev. 41: 143-210 (1989)

181. Monaghan D.T., Holets V.R., Toy D.W., Cotman C.W.: Anatomical distribution of four pharmacologically distinct 3H-L-glutamate binding sites. Nature 306: 176-179 (1983)

182. Ito I., Tanabe S., Kohda A., Sugiyama H.: Allosteric potentiation of quisqualate receptors by a nootropic drug aniracetam. J. Physiol. 424: 533-543 (1990)

183. Meldrum B., Garthwaite J.: Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol. Sci. 11: 379-387 (1990)

184. Harris E.W., Camong A.H., Cotman C.W.: Long term potentiation in the hippocampus involves activation of N-Methyl-D-Aspartate receptors. Brain Res. 323: 132-137 (1984)

185. Collingridge G.L.: Long term potentiation in the hip-pocampus: mechanisms of initiation and modulation by neurotransmitters. Trends Pharmacol. Sci. 6: 407-411 (1985)

186. Faden A.I., Demediuk P., Panter S.S., Vink R.: The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244: 798-800 (1989)

187. Dodd P.R., Scott H.L., Westphalen R.I.: Excitotoxic mechanisms in the pathogenesis of dementia. Neurochem. Int. 25: 203-219 (1994)

188. Maragos W.F., Greenamyre J.T., Penney J.B., Young A.B.: Glutamate dysfunction in Alzheimer’s disease: an hypothesis. Trends Neurosci. 10: 65-68 (1987)

189. Armstrong D.M., Koviomovic M.D.S., Sheffield R., Wenthold R.S.: AMPA-selective glutamate receptor sub-type immunoreactivity, in the entorhinal cortex of non-demented elderly and patients with Alzheimer’s disease. Brain Res. 639: 207-216 (1994)

190. Rockwell E., Jeste D.V.: Newest approaches to the pharmacological prevention and treatment of the cognitive impairment in Alzheimer’s disease. Fund. Clin. Pharmacol. 13(Suppl.1): 113s (1999)

191. Rakovska A., Kiss J., Raichev P., Vizi E.S.: Effect of glutamatergic antagonist GYKI 52466 on quisqualate-induced acetylcholine release from the rat hippocampus: in vivo microdialysis study. Fund. Clin. Pharmacol. 13(Suppl.1): 133s (1999)

192. Dimitrova D., Getova D.: Comparison of the effects of GABA-B-antagonist CGP 56433A and nootropic drug oxiracetam on active avoidance in rats. Fund. Clin. Pharmacol. 13(Suppl.1): 218s (1999)

– Getova D., Spassov V., Bowery N.: Effects of two GABAB antagonists and oxiracetam on active avoidance in rats. Fund. Clin. Pharmacol. 13(Suppl.1): 219s (1999)

193. Gudasheva T., Ostrovkaya R., Boyko S., et al.: The main metabolite of nootropic drug GVS-111 coincides with endogenous memory enhancing peptide cyclopropyl-glycine. Fund. Clin. Pharmacol. 13(Suppl.1): 142s (1999)

194. Ostrovskaya R., Busciglio J., Grechenko T., et al.: Mechanisms involved involved in the neuroprotective effect of cognition enhancing proline-containing dipeptide GVS-111. Fund. Clin. Pharmacol. 13(Suppl.1): 219s (1999)

195. Koh, J.Y., Palmer E., Lin A., Gotman E.W.: A metabotropic glutamate receptor agonist does not mediate neuronal degeneration in cortical culture. Brain Res. 561: 338-343 (1991)

196. Spignoli G., Pepeu G.: Interaction between oxi-racetam, aniracetam, and scopolamine on behavior and brain acetylcholine. Pharmacol. Biochem. Behav. 27: 491-495 (1987)

197. Pizzi M., Fallacara C., Arrighi V., Memo M., Spano D.F.: Attenuation of the excitatory amino acid neurotoxicity by t-ACPD and aniracetam. Poster presentational Presi-dent’s Workshop, Recent advances in the treatment of neurodegenerative disorders and cognitive dysfunction. Capri, 1-3 Maggio, 1993

198. Martin J.R., Haefely W.E.: Pharmacology of ani-racetam: a novel pyrrolidinone derivative with cognition enhancing activity. Drug Invest. 5(Suppl. 1): 4-49 (1993)

199. Copani A., Genazzani A.A., Aleppo G., et al.: Nootropic drugs positively modulate a-amino-3-hydroxy-5-methyl-4-isoxazolopropionic Acid-sensitive glutamate re-ceptors in neuronal cultures. J. Neurochem. 58: 1199-1204 (1992)

200. Nicoletti F., Casabona G., Genazzani A. Scopagnini et al.: Excitatory amino acids and neuronal plasticity modulation of AMPA receptors as a novel substrate for the action of nootropic drugs. Funct. Neurol. 7: 413-422 (1992)

201. Dajas F., Romero S., Floren M., et al.: Neuropsy-chological psychiatric assessment of the effects of aniracetam (Ro 13-5057) on age related brain deficits. Ar-zneimittel – forschung/Drug Res. 33: 865-867 (1983)

202. Canonico V., Forgione L., Paoletti C., Casini A., et al Efficacia e tollerabilita dell’ aniracetam in pazienti anziani affet da deterioramento mentale primitivo e secondario. Nuova Rivista di Neurologia 1(61), n. 3: 92-96 (1991).

203. Senin U., Abeate G., Fieschi C., Gori B., Guala A., et al.: Aniracetam (Ro 13-5057) in the treatment of senile dementia of the Alzheimer’s type (SDAT): results of a placebo controlled multicentre clinical study. Eur. Neuro-psychopharmacol. 1: 511-517 (1991)

204. Senin U., Parnetti, L., Cucinotta D., Criscuolo D., Marini C., e Longo A.: Clinical experience with aniracetan in the treatment of senile dementia of the Alzheimer’s type and related disorders. Drug Invest. 5(Suppl. 1): 96-104 (1993)

205. Lee C.R., Benfield P.: Aniracetam: an overview of its pharmacodynamic and pharmacokinetic properties and a review of its therapeutic potential in senile cognitive disorders. Drugs Ageing 4: 257-73 (1994)

206. Sourander L.B., Portin R., Möslä P., Lanher A., Rinne U.K.: Senile dementia of the Alzheimer type treated with aniracetam: a new nootropic agent. Psychopharmacology 91: 90-95 (1987)

207. Nanjoh C., Utoh M., Yamamoto T., Kuruma I.: Human pharmacokinetics of aniracetam (Ro 13-5057) (1): single oral administration. F. Hoffmann-La Roche (Basilea) data on file B-145-357, 1985

208. Guenzi A., Gianni A., Marini G., Villa G.: Pharmacokinetics of RO 13-6680 (N-anisoyl-GABA) following single and repeated oral administration of aniracetam to elderly subjects with renal failure. F. Hoffman-La Roche (Basilea) data on file, 1993

209. Marx J.: Searching for drugs that Combat Alzheimer’s Science 273: 50-53 (1996)

210. O’Neill M.J., Bond A., Hicks C.A., et al.: Comparison of the neuroprotective effects of excitatory amino acid antagonists in global cerebral ischaemia. Fund. Clin. Pharmacol. 13(Suppl.1): 219s (1999)

211. Lynch G., Granger R., Ambross-Ingerson J., Davis C.M., Kessler M., Schehr R.: Evidence that a positive modulator of AMPA-type glutamate receptors improves delayed recall in aged human. Exp. Neurol. 145: 89-92 (1997)

212. Kettl P.. Alzheimer’s Disease. An update. Hosp. Med. 33(10): 12-14, 1997. Quadrant Health Com. Inc.

213. Yaffe K., Sawaya G., Lieberburg I., Grady D.: Estrogen therapy in Post menopausal Women. JAMA 279 (No 9), 1998

214. Gere A., Kis-Varga A., Kalmar B., et al.: Cyclooxygenase inhibitors protect the brain against ischemic damage. Fund. Clin. Pharmacol. 13(Suppl.1): 190s (1999)

215. Berson J.A.O., Palin A.N., Ebmeier K.P., Eagles J.M., Smith F.W.: Calcium antagonists and multi-infarct dementia: a trial involving sequential NMR and psychometric assessment, Int. J. Geriatr. Psychiatry 3: 99-105 (1988)

216. Parnetti L., Senin U., Carosi M., Baasch H.: Mental deterioration in old age: results of multicenter, clinical trials with nimodipine. Clin. Ther. 15: 394-406 (1993)

217. Hellweg R., Von Richthofen S., Andress D., Baetgge C., Ropke S., Hartung D.H., Gericke A.C.: The time course of nerve growth factor content in different neurop-sychiatric diseases – a unifying hypothesis Review Article. J. Neural Transm. 105: 394-406 (1998)

218. Reisberg R., Ferris S.H., De Leon M.J., Crook T.: The Global Deterioration Scale for assessment of primary degenerative dementia. Am. J. Psychiatry 139: 1136-1139 (1982)

219. Gotftries C.G., Brane G., Gullberg B., Steen G.: A new rating scale for dementia syndromes. Arch. Gerontol. Geriatr. 1: 311-330 (1982)

220. Rosen W.C., Mohs R.C., Davis K.L.: A new rating scale for Alzheimer’s disease. Am. J. Psychiatry 141: 1356-1364 (1984)

221. Schneider L.: An overview of rating scales used in dementia research. Alzheimer Insights 2(3): 1-7 (1996)

222. Folstein M.F., Folstein S.E., Mc Hugh P.R.: Minimental state, a practical method for grading the cognitive state of patients for the clinician. J. Psychiatr Res. 12: 189-198 (1975)

223. Golomb J.: Neuropsychologic and neuroimaging techniques for the early diagnosis of Alzheimer’s disease. Fund. Clin. Pharmacol. 13(Suppl.1): 113s (1999)

224. Felician D.L., Sandson A.T.: The Neurobiology and Pharmacotherapy of Alzheimer’s Disease. J. Neuropsy-chiatry Clin. Neurosci. Winter 11: 1 (1999)

225. Giacobini E.: Progress in pharmacotherapy of Alzheimer disease: Symptomatic stabilization. Fund. Clin. Pharmacol. 13(Suppl.1): 52s (1999)

226. Ivan L.: Personality oriented pharmacotherapy in geriatric medicine. Fund. Clin. Pharmacol. 13(Suppl.1): 113s (1999)

227. Schenk D., Barbour R., Dunn W.: Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400: 173-177 (1999)

228. St George-Hyslop P.H., Westaway D.A.: Antibody clears senile plaques. Nature 400: 116-117(1999)

Online ISSN 1011-6575

Άρθρα Δημοσιευμένα σε αυτό το Περιοδικό Καταχωρούνται στα:
Chemical Abstracts

Elsevier’s Bibliographic Databases: Scopus, EMBASE, EMBiology, Elsevier BIOBASE
SCImago Journal and Country Rank Factor

Articles published in this Journal are Indexed or Abstracted in:
• Chemical Abstracts
• Elsevier’s Bibliographic Databases: Scopus, EMBASE, EMBiology, Elsevier BIOBASE
SCImago Journal and Country Rank Factor

Άρθρα Δημοσιευμένα στην Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Ελληνική Έκδοση
Articles Published in Epitheorese Klinikes Farmakologias και Farmakokinetikes-Greek Edition

Συντακτικη Επιτροπή-Editorial Board

ΕΤΗΣΙΑ ΣΥΝΔΡΟΜΗ – ANNUAL SUBSCRIPTION
Γλώσσα Πλήρους Κειμένου –
Full Text Language
Ελληνικά – Greek
Παραγγελία – Αγορά –
Order – Buy
Ηλεκτρονική Μορφή: pdf (70 €) –
Digital Type: pdf (70 €)
pharmakonpress[at]pharmakonpress[.]gr
Έντυπη Μορφή (70 € + έξοδα αποστολής)
Printed Type (70 € + shipping)
pharmakonpress[at]pharmakonpress[.]gr

 

Προσθέστε στους σελιδοδείκτες το μόνιμο σύνδεσμο.

Τα σχόλια είναι απενεργοποιημένα.