Τίτλος – Title
|
Παχυσαρκία και Ορμόνες Obesity and Hormones |
|
Συγγραφέας – Author
|
Υβόννη Δημουλά1, Πλούταρχος Κούρτης1, Ναυσικά Βιολάκη2, Γεωργία Μαργαρίτη2, Σταύρος Τ. Πλέσσας2 1 Εργαστήριο Φυσιολογίας του Ανθρώπου, Σχολή Επιστημών Υγείας ΤΕΙ Αθήνας 2 Τμήμα Νοσηλευτικής, Πανεπιστήμιο Αθηνών Yvonne Dimoula1, Ploutarchos Kourtis1, Nausika Violaki2, Georgia Margariti2, Stavros T. Plessas2 1 Laboratory of Physiology, Department of Health and Caring Professions, Technological Educational Institution of Athens, 2 Faculty of Nursing, University of Athens, Athens Greece |
|
Παραπομπή – Citation
|
Δημουλά,Χ., Κούρτης,Π., Βιολάκη,Ν., Μαργαρίτη,Γ., Πλέσσας,Σ.Τ. : Παχυσαρκία και Ορμόνες , Επιθεώρηση Κλιν. Φαρμακολ. Φαρμακοκινητ. 17 : 137-152 (1999) Dimoula,Y., Kourtis,P., Violaki,N., Margariti,G., Plessas,S.T. : Obesity and Hormones, Epitheorese Klin. Farmakol. Farmakokinet. 17: 137-152 (1999) |
|
Ημερομηνία Δημοσιευσης – Publication Date
|
18-09-1999
|
|
Γλώσσα Πλήρους Κειμένου –
Full Text Language |
Ελληνικά – Greek |
|
Παραγγελία – Αγορά –
Order – Buy |
Ηλεκτρονική Μορφή: pdf (15 €) –
Digital Type: pdf (15 €) pharmakonpress[at]pharmakonpress[.]gr |
|
Λέξεις κλειδιά – Keywords
|
Παχυσαρκία, ορμόνες, αδρεναλίνη, νοραδρεναλίνη, σεροτονίνη, νευροπεπτίδιο Υ, πεπτίδιο ΥΥ, γαλανίνη, γλυκαγονοειδές πεπτίδιο, ινσουλίνη, εκλυτικός παράγων κορτικοτροπίνης, θυροξίνη, τριιωδοθυρονίνη, λεπτίνη, ασύζευκτες πρωτεΐνες Obesity, hormones, adrenalin, noradrenalin, serotonin, neuropeptide Y, peptide YY, galanin, glucagon-like peptide, insulin, corticotropin releasing hormone, thyroxin, leptin, uncoupling proteins
|
|
Λοιποί Όροι – Other Terms
|
Άρθρο Article |
|
Περίληψη – Summary
|
Η παχυσαρκία, η αύξηση δηλαδή του βάρους του σώματος, τουλάχιστον κατά 15%, από αποθηκευμένο λίπος, είναι νόσος πολυπαραγοντικής αιτιολογίας, αποτελούσα παράγοντα κινδύνου για πολλές παθήσεις με σημαντικό κοινωνικοοικονομικό κόστος. Η ειδική δίαιτα απίσχνασης δεν επιτυγχάνει συνήθως μακροχρόνια διατήρηση του κανονικού σωματικού βάρους και οι περισσότεροι παχύσαρκοι ανακτούν το απολεσθέν βάρος. Αυτή η σχετική σταθερότητα στο σωματικό βάρος δείχνει πως το ισοζύγιο ενεργείας πιθανόν να ελέγχεται από καμπύλη παλίνδρομης αλληλορύθμισης που διατηρεί σταθερές τις συνολικές αποθήκες ενεργείας του σώματος. Πολλές ουσίες έχει ευρεθεί να επηρεάζουν τη διατροφική συμπεριορά. Στις ουσίες που αυξάνουν την πρόσληψη τροφής συμπεριλαμβάνονται η νοραδρεναλίνη, το GABA, η εκλυτική ορμόνη της αυξητικής ορμόνης, τα οπιοειδή β-ενδορφίνη, εγκεφαλίνη και δυνορφίνη, η γαλανίνη, το πεπτίδιο ΥΥ και τέλος το νευροπεπτίδιο Υ, που αποτελεί ένα από τους ισχυρότερους, μέχρι σήμερα γνωστούς, διεγέρτες της πρόσληψης τροφής. Στις ουσίες που αναστέλλουν την πρόσληψη τροφής συμπεριλαμβάνονται η σεροτονίνη, η ντοπαμίνη, υπό ορισμένες συνθήκες η αδρεναλίνη και η νοραδρεναλίνη, η νευροτασίνη, η εκλυτική ορμόνη της κορτικοτροπίνης, η χoλoκυστοκυνίνη, η καλσιτονίνη, η ινσουλίνη, όταν χορηγείται κεντρικά και το γλυκαγονοειδές πεπτίδιο-1. H ανακάλυψη της λεπτίνης το 1994, της κυριότερης από τις ορμόνες που παράγει ο λιπώδης ιστός, προσέθεσε ένα σημαντικό νέο δεδομένο στο πρόβλημα της παχυσαρκίας. Η λεπτίνη είναι παράγωγο του ob γονιδίου και συντίθεται από το λευκό λιπώδη ιστό σε συνθήκες ενεργειακής επαρκείας. Οι συγκεντρώσεις της λεπτίνης στο πλάσμα συσχετίζονται με τη μάζα του λιπώδους ιστού, μειώνονται μετά από απώλεια βάρους και γίνονται αισθητές από ομάδες νευρώνων στον υποθάλαμο. Κατά τη διάρκεια της νηστείας οι συγκεντρώσεις της λεπτίνης πίπτουν με αποτέλεσμα να ενεργοποιείται αντιρροπιστική ορμονική και μεταβολική απόκριση καθώς και κατάλληλη διατροφική συμπεριφορά, όταν υπάρχει διαθέσιμη τροφή. Η αύξηση του βάρους αυξάνει τις συγκεντρώσεις λεπτίνης και προκαλεί διαφορετική απόκριση που οδηγεί σε κατάσταση αρνητικού ισοζυγίου ενεργείας. Τέλος, η πρόσφατη ανακάλυψη των ασύζευκτων πρωτεϊνών των μιτοχονδρίων έδωσε νέα ώθηση στην έρευνα της παχυσαρκίας. Ασύζευκτη πρωτεΐνη περιεγράφη αρχικά στην έσω μεμβράνη των μιτοχονδρίων των κυττάρων του φαιού λιπώδους ιστού, επιτρέπουσα την οξείδωση θρεπτικών ουσιών. Αντίστοιχες πρωτεΐνες ευρέθησαν σε πολλούς ιστούς και ρυθμίζονται από ορμόνες και διαιτητικούς παράγοντες. Το επίπεδο της έκφρασης και/ή της δραστηριότητας αυτών των πρωτεϊνών είναι πιθανό να παίζει ρόλο στις διαφορές στο μεταβολισμό και στη μάζα του σωματικού λίπους που υπάρχουν στα διάφορα άτομα με ενδεχόμενη συμμετοχή στην ανάπτυξη παχυσαρκίας στον άνθρωπο. The ability to store sufficient quantities of energy-dense triglyceride in adipose tissue allows survival during the frequent periods of food deprivation encountered during evolution. However, obesity which means the presence of excess adipose tissue, can be maladaptive. Obesity is an independent risk factor for a number of medical conditions, including diabetes mellitus, hypertension, coronary heart disease, depression, musculoskeletal disorders and several cancers. The economic costs associated with specific obesity-related diseases in USA represent 5.5% to 7.8% of total healthcare expenditures. A complex physiological system has evolved to regulate fuel stores and energy balance to an optimum level, and body weight appears to be homeostatically regulated at a certain set point. To be able to regulate body weight the brain must be able to sense the size of adipose mass and to adjust hunger, satiety and energy expenditure accordingly so as to maintain and defend body fat mass at a certain level. Many monoamines and peptides (substances) have been found to have effects in eating behavior. The feeding stimulatory transmitters include the catecholamine norepinephrine, the aminoacid GABA, the releasing factor of growth hormone, the opioids β-endorphin, enkefalin and dynorphin, the pancreatic polypeptides neuropeptide Y (which is one of the most potent inducers of food intake known in central administration) and peptide YY and finally the peptide galanin. The feeding-inhibitory neurotransmitters include the monoamines 5-HT, DA, and under certain conditions NE and EPI, neurotensin, corticotrophin releasing hormone, cholo-cystokinin, calcitonin, centrally administered insulin, glucagon like peptide-1 and glucagon. The discovery of leptin in 1994 has provided a major new piece in the puzzle of obesity. Leptin, product of the ob gene, controls appetite through the hypothalamus and may affect many other tissues because of the widespread distribution of its receptors. Leptin is synthesised by white adipose tissue under conditions of high energy availability and the plasma leptin levels are highly correlated with adipose tissue mass and fall in both humans and mice after weight loss. Leptin concentrations are sensed by groups of neurons in the hypo-thalamus. During starvation, leptin levels fall, thus activating a behavioural, hormonal and metabolic response that is adaptive when food is available. Weight gain increases plasma leptin concentration and elicits a different response, leading to a state of negative energy balance. Finally the recent discovery of uncoupling proteins brings new hope to obesity re-search. Uncoupling protein, originally described in the inner mitochondrial membrane of brown adipose tissue, permits the oxidation of fuels without the generation of ATP. Closely related proteins have now been found in many other tissues and shown to be regulated by thyroid hormones and dietary factors. The expression level and/or the activity of these proteins may play a role in the differences in metabolic rates and body fat mass observed between individuals with implications for the development of human obesity. |
|
Αναφορές – References
|
1. Friedman J.M., Halas J.L.: Leptin and the regulation of body weight in mammals. Nature 395 (22 October) 1998
2. Rippe J.M., Crossley S., Ringer R.: Obesity as a chronic disease: modern medical and lifestyle management. J. Am. Diet. Assoc. 98(Suppl 2): S9-15 (1998) 3. Poston W.S., Foreyt J.P., Borrell L., Haddock C.K.: Challenges in obesity management. South Med. J. 91: 710-720 (1998) 4. Kortt M.A., Langley P.C., Cox E.R.: A review of cost-of-illness studies on obesity. Clin. Ther. 20: 772-779 (1998) 5. Bjorntop P., Brodoff B.N.: Obesity. Pp. 184-200, J.P. Lippincott Company, 1992 6. Goldman C.K., Marino L, Leibowitz S.F.: Postsynaptic a2-noradrenergic receptors mediate feeding induced by paraventricular nucleus injection of norepinephrine and clonidine. Eur. J. Pharmacol 115: 11 (1985) 7. Aravich P.F., Saclfani A.: Paraventricular hypothalamic lesions and medical hypothalamic knife cuts produce similar hyperphagia syndromes. Behav. Neurosci. 97: 970 (1983) 8. Shor-Posner G., Azar A.P., Insinga S., et al.: Deficits in the control of food intake after hypothalamic paraventricular nucleus lesions. Physiol. Behav. 35: 883 (1985) 9. Leibowitz S.F., Weiss G.F., Yee F., et al.: Noradrenergic innervation of the paraventricular nucleus: Specific role in the control of carbohydrate ingestion. Brain Res Bull 14: 561 (1985) 10. Lichtenstein S.S., Marinescu G., Leibowitz S.F.: Chronic infusion of norepinephrine and clonidine into the hypothalamic paraventricular nucleus. Pharmacol. Biochem. Behav 13: 591 (1984) 11. Yee F., MacLow C., Chan I.N. et al.: Effects of chronic paraventricular nucleus infusion of clonidine and a-mehtyl-para-tyrosine on macronutrient intake. Appetite 9: 127 (1987) 12. Leibowitz S.F.: Brain monoamines and peptides: Role in the control of eating behavior. Fed. Proc. 45:1396 (1986) 13. Leibowitz S.F.: Hypothalamic neurotransmitters in relation to normal and disturbed eating patterns. Ann. N.Y. Acad. Sci. 499: 137 (1987) 14. Leibowitz S.F.: Hypothalamic paraventricular nucleus: Interaction between a2-noradrenergic system and circulating hormones and nutrients in relation to energy balance. Neurosci. Biobehav. Rev. 12: 101 (1988) 15. Wurtman R.J., Heftl F., Melamed E.: Precursor control of neurotransmitter synthesis. Pharmacol. Rev. 32: 315 (1981) 16. Wurtman R.J., Wurtman J.J.: Nutrients, neurotransmitters synthesis and the control of food intake. In: (Stunkard A., Stellar E., eds) Eating and Its Disorders: Association for Research in Nervous and Mental Disease. Pp 77-96, Raven Press, New York, 1984 17. Tatemoto K., Carlquist M., Mutt V.: Neuropeptide Y- a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296: 659-660 (1982) 18. Chronwal B.M., Di Maggio D.A., Massari V.J., et al.: The anatomy of neuropeptide Y containing neurons in the rat brain. J. Neurosci. 15: 1159-1181 (1985) 19. Lungdberg J.M., Terenius L., Hokfelt T., et al.: Neuropeptide Y (NPY)-like immunoreactivity in peripheral noradrenergic neurons and effects of NPY on sympathetic function. Acta Physiol. Scand. 116: 479-480 (1982) 20. Clark J.T., Kalra P.S., Crowley W.R., Kalra S.P.: Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology 115: 427-429 (1984) 21. Morley J.E., Levine A.S., Gosnell B.A., et al.: Effect of neuropeptide Y on ingestive behaviors in the rat. Am. J. Physiol. 252: R599-R609 (1987) 22. Zarjievski N., Cusin I., Vettor R., et al.: Chronic intracerebroventricular neuropeptide-Y administration to normal rats mimics hormonal and metabolic changes of obesity. Endocrinology 133: 1753-1758 (1993) 23. Moltz J.H., McDonald J.K.: Neuropeptide Y: Direct an indirect action on insulin secretion in the rats. Peptides 6: 1155-1159 (1985) 24. Kuenzel W.J., McMurtry J.: Neuropeptide Y: Brain localization and central effects on plasma insulin levels in chicks. Physiol. Behav. 44: 669-678 (1988) 25. Abe M., Saito M., Shimazu T.: Neuropeptide Y and norepinephrine injected into the paraventricular nucleus of the hypothalamus activate endocrine pancreas. Biomed. Res. 10: 431-436 (1989) 26. Zarjevski N., Cusin I., Vettor R., et al.: Chronic intracerebroventricular neuropeptide-Y administration to normal rats mimics hormonal and metabolic changes of obesity. Endocrinology 133: 1753-1758 (1993) 27. Zarjevski N., Cusin I., Vettor R., et al.: Intracerebroventricular administration of neuropeptide Y to normal rats has divergent effects on glucose utilization by adipose tissue and skeletal muscle. Diabetes 43: 764-769, (1994) 28. Vettor R., Zarjevski N., Cusin I., et al.: Induction and reversibility of an obesity syndrome by intracerebroventricular neuropeptide Y administration to normal rats. Diabetologia 37: 1202-1208 (1994) 29. White B.D., Martin R.J.: Evidence for a central Mechanism of Obesity in the Zucker Rat: Role of Neuropeptide Y and Leptin. Proc. Soc. Exp. Biol. Med. 214: 222-232 (1997) 30. Rohner-Jeanrenaud F., Jeanrenaud B.: Aspects of neuroregulation of body composition and insulin secretion. Int.. J. Obesity 15: 117-122 (1991) 31. Plotsky P.M., Thrivikraman K.V., Watts A.G., Hauger R.L.: Hypothalamic-pituitary-adrenal axis function in the Zucker obese rat. Endocrinology 130: 1931-1941 (1992) 32. Rohner-Jeanrenaud F., Jeanrenaud B.: Acute intravenous corticotropin-releasing factor administration: effects on insulin secretion in lean and genetically obese falfa rats. Endocrinology 130: 1903-1908 (1992) 33. Strombom U., Krotkiewski M., Blennow K., et al.: The concentrations of monoamine metabolites and neuropeptides in the cerebrospinal fluid of obese women with different body fat distribution. Int. J. Obesity 20: 361-368 (1996) 34. Brunani A., Invitti C., Dubini A., et al: Cerebrospinal fluid and plasma concentrations of SRIH, beta-endorphin, CRH, NPY and GHRH in obese and normal weight subjects. Int. J. Obesity 19: 17-21 (1995) 35. Holst J.J.: Glucagon-like peptide l: a newly discovered gastrointestinal hormone. Gastroenterology 107: 1848-1855 (1994) 36. Turton M.D., O’ Shea D., Gunn I., et al.: A role for glucagon-like peptide-l in the central regulation of feeding. Nature 379: 69-72 (1996) 37. Alvarez E., Roncero I., Chowen J.A., et al.: Expression of the glucagon-like peptide-l receptor gene in rat brain. J. Neurochem. 66: 920-927 (1996) 38. Schwartz M.R., Figlewicz D.P., Baskin D.G., et al.: Insulin in the brain: a hormonal regulator of energy balance. Endocr. Rev. 13: 387-414 (1992) 39. Porte D., Woods S.C.: Regulation of food intake and body weight by insulin. Diabetologia 20: 274-280 (1981) 40. Sipols A.J., Baskin D.G., Schwartz M.W.: Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression. Diabetes 44: 147-151 (1994) 41. Brant A.M., Jess T.J., Milligan G., et al.: Immunological analysis of glucose transporters expressed in different regions of the rat brain and central nervous system. Biochem. Biophys. Res. Comm. 192: 1297-1302 (1993) 42. Rayner D.V., Thomas M.E.A., Trayburn P.: Glucose transporters (GLUTs 1-4) and their mRNAs in regions of the rat brain: insulin-sensitive transporter expression in the cerebellum.? J. Physiol. Pharmacol. 72: 476-479 (1994) 43. Ikeda H., West D.B., Pustek J.J., et al: Intracerebroventricular insulin reduces food intake and body weight of lean but not obese Zucker rats. Appetite 7: 381-386 (1986) 44. Βάθη Γ., Βιολάκη Ν., Συμεωνίδης Σ., Παϊκοπούλου Δ., Πλέσσας Σ.Τ.: Λεπτίνη: Ο ρόλος μιας νέας ορμόνης στην αιτιολογία και στη θεραπεία της παχυσαρκίας. Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής 14: 141-151 (1996) 45. Coleman D.L.: Obese and Diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14: 141-148 (1978) 46. Spiegelman B.M., Flier J.S.: Adipogenesis and obesity: rounding out the big picture. Cell 87: 377-389 (1996) 47. Tartaglia L.A. et al.: Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263-1271 (1995) 48. Lee G.H., et al.: Abnormal splicing of the leptin receptor in diabetic mice. Nature 379: 632-635 (1996) 49. Li C., et al. Absence of soluble leptin receptor in plasma from dbPas/dbPasand other db/db mice. J. Biol. Chem. 273: 10078-10082 (1998) 50. Bjorbaek C., Uotani S., daSilva B., Flier J.S.: Divergent signaling capacities of the long and short isoforms of the leptin receptor. J. Biol. Chem. 272: 32686-32695 (1997) 51. Lord G.M., et al.: Leptin modulates the T-cell immune response and reverses starvation induced immunosuppression. Nature 394: 897-891 (1998) 52. Chilardi N., et al.: Defective STAT signaling by the leptin receptor in diabetic mice. Proc. Natl. Acad. Sci. USA 93: 6231-6235 (1996) 53. Sierra-Honigmann M.R., et al. Biologic action of leptin as an angiogenic factor. Science 281: 1683-1685 (1998) 54. Glaum S.R., et al.: Leptin, the obese gene product, rapidly modulates synaptic transmission in the hypothalamus. Mol. Pharmacol. 50: 230-235 (1996) 55. Maffei M., et al.: Increased expression in adipocytes of ob RNA in mice with lesions of the hypothalamus and with mutations at the db locus. Proc. Natl. Acad. Sci. USA 92: 6957-6960 (1995) 56. Hallas J. L., et al.: Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269: 543-546 (1995) 57. Satoh N., et al.: Pathophysiological significance of the obese gene product, leptin, in ventromedial hypothalamus (VMH)-lesioned rats: evidence for loss of its satiety effect in VMH-lesioned rats. Endocrinology 138: 947-954 (1997) 58. Halaas J.L., et al.: Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc. Natl. Acad. Sci. USA 94: 8878-8883 (1997) 59. Campfield L.A., et al.: Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269: 546-549 (1995) 60. Stephens T.W., et al.: The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature 377: 530-534 (1995) 61. Wang M.Y., et al.: Ob-Rb gene transfer to leptin-resistant islets reverses diabetogenic phenotype. Proc. Natl. Acad. Sci. USA 95: 714-718 (1998) 62. Banks W.A., et al.: Leptin enters the brain by a saturable system independent of insulin. Peptides 17: 305-311 (1996) 63. Hakansson M.L., et al.: Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. J. Neurosci 18: 559-572 (1998) 64. Hetherington A.W., Ranson S.W:. The spontaneous activity and food intake of rats with hypothalamic lesions. Am. J. Physiol 136: 609-617 (1942) 65. Mercer J.G., et al.: Localization of leptin receptor mRNA and the long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization. FEBS Lett. 387: 113-116 (1996) 66. Fei H., et al.: Anatomic localization of alternatively spliced leptin receptors. (Ob-R) in mouse brain and other tissues. Proc. Natl. Acad. Sci. USA 94: 7001-7005 (1997) 67. Friedman J.M.: The alphabet of weight control. Nature 385: 119-120 (1997) 68. Satoh N., et al.: Satiety effect and sympathetic activation of leptin are mediated by hypothalamic melanocortin system. Neurosci. Lett. 249: 107-110 (1998) 69. Rohner-Jeanrenaud F., Walker C.L., Greco-Perotto R., Jeanrenaud B.: Central corticotropin-releasing factor administration prevents the excessive body weight gain of genetically obese (fa/fa) rats. Endocrinology 124: 733-739 (1989) 70. Ohi-Hamazaki H., et al.: Mice lacking bombesin receptor subtype-3 develop metabolic defects and obesity. Nature 390: 165-169 (1997) 71. Woods S.C., Chavez M., Park C.R.: The evaluation of insulin as a metabolic signal influencing behavior via the brain. Neurosci. Biobehav. Rev. 20: 139-144 (1996) 72. Matson C.A., Wiater M.F., Kuijper J.L., Weigie D.S.: Synergy between leptin and cholecystokinin (CCK) to control daily caloric uptake. Peptides 18: 1275-1278 (1997) 73. Chen G., et al.: Disappearance of body fat in normal rats induced by adenovirus-mediated leptin gene therapy. Proc. Natl. Acad. Sci. USA 93: 14795-14799 74. Sivitz W.I., et al.: Effects of leptin on insulin sensitivity in normal rats. Endocrinology 138: 3395-3401 (1997) 75. Haynes W.G., et al.: Receptor-mediated regional sympathetic nerve activation by leptin. J. Clin. Invest. 100: 270-278 (1997) 76. Fain J.N., Coronel E.C., Beauchamp M.J., Bahouth S.W.: Expression of leptin and beta 3-adrenergic receptors in rat adipose tissue in altered thyroid states. Biochem. J. 322(Pt 1): 145-150 (1997) 77. Maffei M., et al.: Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight -reduced subjects. Nature Med. 1: 1155-1161 (1995) 78. Frederich R.C., et al.: Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nature Med. 1: 1311-1314 (1995) 79. Kanellou A.: Methodological approach for the hormonization of household budget survey’s food data: a comparison among the German, Greek and Hungarian population. Fachverlag Kohler, Eissen, 1999 80. West D.B., Boozer C.N., Moody D.L., Atkinson R.L.: Dietary obesity in nine inbred mouse strains. Am. J. Physiol. 262: R1025-R1032 (1992) 81. Schwartz M.W., et al.: Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nature Med. 2: 589-593 (1996) 82. Caro J.F., et al. Decreased cerebrospinal-fluid/serum leptin ration in obesity: a possible mechanism for leptin resistance. Lancet 348, 159-161 (1996) 83. Montague C.T., et al.: Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387: 903-908 (1997) 84. Strobel A., Camoin T.I.L., Ozata M., Strosberg A.D.: A leptin missense mutation associated with hypogonadism and morbid obesity. Nature Genet. 18: 213-215 (1998) 85. Clement K., et al.: A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392: 398-401 (1998) 86. Considine R.V., et al.: Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334: 324-325 (1996) 87. Wang J., et al.: A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 393: 384-388 (1998) 88. Saladin R., et al.: Transient increase in obese gene expression after food intake or insulin administration. Nature 377: 527-529 (1995) 89. Kiess W., et al.: High leptin concentrations in serum of very obese children are further stimulated by dexamethasone. Horm. Metab. Res. 28: 708-710 (1996) Giovannini C. [Thyroid tumors in obesity]. Minerva – Endocrinol. 23: 27-29 (1998) 90. Nam-Sy, et al.: Effect of obesity on total and free insulin-like growth factor (IGF)-1, and their relationship to IGF-binding protein (BP)-1, IGFBP-2, IGFBP-3, insulin and growth hormone. Int. J. Obes. Relat. Metab. Disord. 21: 355-359 (1997) 91. Zhou X., et al.: Cafeteria diet induced obese rats have an increased somatostatin protein content and gene expression in the periventricular nucleus. J. Endocr. Invest. 20: 264-269 (1997) 92. Felig P.H., Baxter J.D., Frohman L.A.: Endocrinology and Metabolism. Pp. 444, 1289, Mc Graw Hill, 1995 93. Ranneries C., Buemann B., Toubro S., et al.: Low energy metabolism in persons predisposed to obesity: significance of the thyroid status. Ugeskr-Laeger. 160: 644-647 (1998) 94. Legradi G., Emerson C.H., Ahima R.S., et al.: Leptin prevents fasting-induced suppression of prothyrotropin-releasing hormone messenger ribonucleic acid in neurons of the hypothalamic paraventricular nucleus. Endocrinology 138: 2569-2576 (1997) 95. Beard J., Borel M., Peterson F.J.: Changes in iron status during weight loss with very-low-energy diets. Am. J. Clin. Nutr. 66: 104-110 (1997) 96. Buemann B., Toubro S., Astrup A.: Substrate oxidation and thyroid hormone response to the introduction of a high fat diet in formerly obese. Int. J. Obes. Relat. Metab. Disord. 22: 869-877 (1998) 97. Buscemi S., Verga S., Maneri R., et al.: Influences of obesity and weight loss on thyroid hormones. A 3-3.5-year follow-up study on obese subjects with surgical bilio-pancreatic by-pass. J. Endocrinol. Invest. 20: 276-281 (1997) 98. Festuccia F., Romiti A., Buzzetti R., et. al.: Latent thyroid diseases in obesity. Prog. Med. 89: 165-168 (1998) 99. Romiti A., Buzzetti R., Salandri A., et al.: Thyroid tumors in obesity. Minerva Endocrinol. 23: 27-29 (1998) 100. Pietri-Rouxel F., St. John-Manning B., Gros J., Stros-berg A.D.: The biochemical effect of the naturally occur-ing Trp64–>Arg mutation on human beta3- adrenoceptor activity. Eur. J. Biochem. 247: 1174-1179 (1997) 101. Hellstrom L., Rossner S., Hagstrom-Toft E., Reynisdottir S.: Lipolytic catecholamine resistance linked to alpha 2-adrenoceptor sensitivity –a metabolic predictor of weight loss in obese subjects. Int. J. Obes. Relat. Metab. Disord. 21: 314-320 (1997) 102. Hoffstedt J., Arner P., Hellers G., Lonnqvist F.: Variation in adrenergic regulation of lipolysis between omental and subcutaneous adipocytes from obese and non-obese men. J. Lipid. Res. 38: 795-804 (1997) 103. Bougneres P., Stunff C.L., Pecquer C., et al.: In vivo resistance of lipolysis to epinephrine. A new feature of childhood onset obesity. J. Clin. Invest. 1: 99: 2568-2573 (1997) 104. Vettor R., Macor C., Rossi E., et al.: Impaired counterregulatory hormonal and response to exhaustive exercise in obese subjects. Acta Diabetol. 34: 61-66 (1997) 105. Freake H.C: Uncoupling proteins: beyond brown adipose tissue. Nutr. Rev. 56: 185-189 106. Rothwell N.J., Stock M.J.: A role for brown adipose tissue in diet-induced thermogenesis. Nature 281: 31-35 (1979) 107. Himms-Hagen J.: Brown adipose tissue thermogenesis: inter-disciplinary studies. FASEB J. 4: 2890-2898 (1990) 108. Heaton G.M., Wagenvood R.J.., Kemp A.,Jr, Nicholls D.G.: Brorwn adipose-tissue mitochondria: photoaffinity labelling of the regulatory site of energy dissipation. Eur. J. Biochem. 82: 515-521 (1978) 109. Hansen E.S., Knudsen J.: Parallel measurements of heat production and thermogenin content in brown fat cells during cold acclimation of rats. Biosci. Rep. 6: 31-38 (1986) 110. Rafael J., Fesser W., Nicholls D.G.: Gold adaptation in guinea pig at level of isolated brown adipocyte. Am. J. Physiol. 250: C228-C235 (1986) 111. Boss O., Samec S., Paolini-Giacobino A., et al.: Uncoupling protein-3:a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. 408: 39-42 (1997) 112. Ricquier D., Casteilla L., Bouilaud F.: Molecular studies of the uncoupling protein. FASEB J. 5: 2237-2242 (1991) 113. Silva J.E., Rabelo R.: Regulation of the uncoupling protein gen expression. Eur. J. Endocrinol. 136: 251-264 (1997) 114. Ricquier D., Bouillaud F., Toumelin P., et al.: Expression of uncoupling protein mRNA in thermogenic or weakly thermogenic brown adipose tissue. Evidence for a rapid beta-adrenoreceptor-mediated and transcriptionally regulat-ed step during activation of thermogenesis. J. Biol. Chem. 261: 13905-13910 (1986) 115. Muzzin P., Revelli J.P., Ricquier D., et a.: The novel thermogenic beta adrenergic agonist Ro 16-8714 increases the interscapular brown-fat-beta-receptor-adenylate cycla-se and the uncoupling-protein mRNA level in obese (fa/fa) Zucker rats. Biochem. J. 261: 721-724 (1989) 116. Rehnmark S., Nechad M., Herron D., et al.: Alpha – and beta-adrenergic induction of the expression of the uncoupling protein thermogenin in brown adipocytes differentiated in culture. J. Biol. Chem. 265: 16464-16471 (1990) 117. Boss O., Muzzin P., Giacobino J.P.: The uncoupling proteins: a review. Eur. J. Endocrinol. 139: 1-9 (1998) 118. Opper J.M., Vohl M.C., Chagnon M., et al.: DNA polymorphism in the uncoupling protein (UCP) gene and human body fat. Intern. J. Obes. Relat. Metab. Disord. 18: 526-531 (1994) 119. Cassard-Doulcier A.M, Bouillaud F., Chagnon M., et al.: The Bcl I polymorphism of the human uncoupling protein (ucp) gene is due to a point mutation in the 5’-flanking region. Intern. J. Obes. Relat. Metab. Disord. 20: 278-279 (1996) 120. Clement K., Ruiz J., Cassard-Doulcier A.M., et al.: Additive effect of A-> G(-3826) variant of the uncoupling protein gene and the Trp64Arg mutation of the beta 3-adrenergic receptor gene on weight gain in morbid obesity. Intern. J. Obes. Relat. Metab. Disord. 20: 1062-1066 (1996) 121. Fumeron F., Durack-BrownI., Betoulle D., et al.: Polymorphisms of uncoupling protein (UCP) and beta 3 adrenoreceptor genes in obese people submitted to a low calorie diet. Intern. J. Obes. Relat. Metab. Disord. 20: 1051-1054 (1996) 122. Gong D.W., He Y., Karas M., Reitman M.: Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin. J. Biol. Chem. 272: 24129-24132 (1997) |
Online ISSN 1011-6575
• Elsevier’s Bibliographic Databases: Scopus, EMBASE, EMBiology, Elsevier BIOBASE
SCImago Journal and Country Rank Factor
Articles published in this Journal are Indexed or Abstracted in:
• Chemical Abstracts
• Elsevier’s Bibliographic Databases: Scopus, EMBASE, EMBiology, Elsevier BIOBASE
SCImago Journal and Country Rank Factor
Τι είναι η Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Ελληνική Έκδοση-Οδηγίες προς τους Συγγραφείς
What is Epitheorese Klinikes Farmakologias και Farmakokinetikes-Greek Edition-Instrunctions to Authors
Άρθρα Δημοσιευμένα στην Επιθεώρηση Κλινικής Φαρμακολογίας και Φαρμακοκινητικής-Ελληνική Έκδοση
Articles Published in Epitheorese Klinikes Farmakologias και Farmakokinetikes-Greek Edition
Συντακτικη Επιτροπή-Editorial Board
ΕΤΗΣΙΑ ΣΥΝΔΡΟΜΗ – ANNUAL SUBSCRIPTION
|
||
Γλώσσα Πλήρους Κειμένου –
Full Text Language |
Ελληνικά – Greek
|
|
Παραγγελία – Αγορά –
Order – Buy |
Ηλεκτρονική Μορφή: pdf (70 €) –
Digital Type: pdf (70 €) pharmakonpress[at]pharmakonpress[.]gr
|
|
Έντυπη Μορφή (70 € + έξοδα αποστολής)
Printed Type (70 € + shipping) pharmakonpress[at]pharmakonpress[.]gr
|